Active control of shimmy oscillation in aircraft landing gear

Shimmy oscillation is an anxious concern in aircraft landing gear design and maintenance. Through related literature review, it is found that active shimmy control (suppressing) is still an open problem. In this thesis, an in-depth analysis has been carried out on aircraft landing gear shimmy dynami...

Full description

Bibliographic Details
Main Author: Long, Shun Hong
Format: Others
Published: 2006
Online Access:http://spectrum.library.concordia.ca/9207/1/Long_Shun_2006.pdf
Long, Shun Hong <http://spectrum.library.concordia.ca/view/creators/Long=3AShun_Hong=3A=3A.html> (2006) Active control of shimmy oscillation in aircraft landing gear. Masters thesis, Concordia University.
id ndltd-LACETR-oai-collectionscanada.gc.ca-QMG.9207
record_format oai_dc
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-QMG.92072013-10-22T03:46:38Z Active control of shimmy oscillation in aircraft landing gear Long, Shun Hong Shimmy oscillation is an anxious concern in aircraft landing gear design and maintenance. Through related literature review, it is found that active shimmy control (suppressing) is still an open problem. In this thesis, an in-depth analysis has been carried out on aircraft landing gear shimmy dynamics and active control strategy has been developed to suppress shimmy oscillation. Based on a nominal aircraft landing gear model, its shimmy Limit Cycle Oscillation (LCO) variation with respect to varying parameters has been studied by numerical integration. The shimmy stability variation with varying caster length and taxiing velocity has also been analyzed after linearizing the system. Due to inherent system dynamics uncertainties (such as varying taxiing velocity) and external disturbances (such as rough runway), Robust Model Predictive Control (RMPC) technology is resorted to suppress shimmy during aircraft landing. A new active control strategy has been proposed suitable for online shimmy control application by combining a RMPC control law with a LPV polytope design. The proposed RMPC has been compared with two present RMPCs both in a benchmark example and the landing gear shimmy control. It has been verified by simulation results that the proposed RMPC stabilizes the unstable parameter-varying landing gear system with guaranteed closed-loop stability, high computational efficiency and strong disturbance rejection ability. Related design parameters, mathematical proof and implementation considerations are addressed in this thesis. 2006 Thesis NonPeerReviewed application/pdf http://spectrum.library.concordia.ca/9207/1/Long_Shun_2006.pdf Long, Shun Hong <http://spectrum.library.concordia.ca/view/creators/Long=3AShun_Hong=3A=3A.html> (2006) Active control of shimmy oscillation in aircraft landing gear. Masters thesis, Concordia University. http://spectrum.library.concordia.ca/9207/
collection NDLTD
format Others
sources NDLTD
description Shimmy oscillation is an anxious concern in aircraft landing gear design and maintenance. Through related literature review, it is found that active shimmy control (suppressing) is still an open problem. In this thesis, an in-depth analysis has been carried out on aircraft landing gear shimmy dynamics and active control strategy has been developed to suppress shimmy oscillation. Based on a nominal aircraft landing gear model, its shimmy Limit Cycle Oscillation (LCO) variation with respect to varying parameters has been studied by numerical integration. The shimmy stability variation with varying caster length and taxiing velocity has also been analyzed after linearizing the system. Due to inherent system dynamics uncertainties (such as varying taxiing velocity) and external disturbances (such as rough runway), Robust Model Predictive Control (RMPC) technology is resorted to suppress shimmy during aircraft landing. A new active control strategy has been proposed suitable for online shimmy control application by combining a RMPC control law with a LPV polytope design. The proposed RMPC has been compared with two present RMPCs both in a benchmark example and the landing gear shimmy control. It has been verified by simulation results that the proposed RMPC stabilizes the unstable parameter-varying landing gear system with guaranteed closed-loop stability, high computational efficiency and strong disturbance rejection ability. Related design parameters, mathematical proof and implementation considerations are addressed in this thesis.
author Long, Shun Hong
spellingShingle Long, Shun Hong
Active control of shimmy oscillation in aircraft landing gear
author_facet Long, Shun Hong
author_sort Long, Shun Hong
title Active control of shimmy oscillation in aircraft landing gear
title_short Active control of shimmy oscillation in aircraft landing gear
title_full Active control of shimmy oscillation in aircraft landing gear
title_fullStr Active control of shimmy oscillation in aircraft landing gear
title_full_unstemmed Active control of shimmy oscillation in aircraft landing gear
title_sort active control of shimmy oscillation in aircraft landing gear
publishDate 2006
url http://spectrum.library.concordia.ca/9207/1/Long_Shun_2006.pdf
Long, Shun Hong <http://spectrum.library.concordia.ca/view/creators/Long=3AShun_Hong=3A=3A.html> (2006) Active control of shimmy oscillation in aircraft landing gear. Masters thesis, Concordia University.
work_keys_str_mv AT longshunhong activecontrolofshimmyoscillationinaircraftlandinggear
_version_ 1716607653089640448