Synthesis of Arborescent Amphiphilic Copolymers

Living anionic polymerization techniques were applied to the synthesis of arborescent (dendritic) well-defined graft polymers having core-shell morphologies, with a hydrophobic core and a hydrophilic shell. Cycles of polystyrene substrate acetylation and anionic grafting yielded successive generatio...

Full description

Bibliographic Details
Main Author: Alzahrany, Yahya
Language:en
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/10012/7296
Description
Summary:Living anionic polymerization techniques were applied to the synthesis of arborescent (dendritic) well-defined graft polymers having core-shell morphologies, with a hydrophobic core and a hydrophilic shell. Cycles of polystyrene substrate acetylation and anionic grafting yielded successive generations of arborescent polystyrenes. The anionic polymerization of styrene with sec-butyllithium provided polystyryllithium serving as side chains. These were coupled with a linear acetylated polystyrene substrate to obtain a generation zero (G0) arborescent polymer. An analogous G0 hydroxyl-functionalized polystyrene substrate with hydroxyl end groups was also obtained by a variation of the same technique, using a bifunctional organolithium initiator containing a hydroxyl functionality protected by a silyl ether group to generate the polystyrene side chains. These were coupled with the linear acetylated polystyrene substrate and subjected to a deprotection reaction to give the G0 polymer functionalized with hydroxyl groups at the chain ends. A similar procedure was used to generate a hydroxyl-functionalized arborescent G1 polymer from the corresponding G0 acetylated polystyrene substrate. The growth of polyglycidol chain segments was attempted from the hydroxyl-functionalized cores, to form a hydrophilic shell around the hydrophobic cores, but led to extensive degradation. A click reaction was also developed to synthesize the amphiphilic copolymers and was much more successful. In this case alkyne-functionalized arborescent polystyrene substrates, obtained by a modification of the hydroxyl-functionalized arborescent polystyrenes, were coupled with azide-functionalized polyglycidol side chains.