Sustainable Municipal Water and Wastewater Management Using System Dynamics

The overall goal of this research is to develop an integrated system dynamics framework for sustainable management of municipal water and wastewater systems. Canadian municipalities have traditionally relied on grants received from senior levels of government to finance construction of water supply...

Full description

Bibliographic Details
Main Author: Rehan, Rashid
Language:en
Published: 2011
Subjects:
Online Access:http://hdl.handle.net/10012/6392
id ndltd-LACETR-oai-collectionscanada.gc.ca-OWTU.10012-6392
record_format oai_dc
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-OWTU.10012-63922014-06-18T03:51:14Z Sustainable Municipal Water and Wastewater Management Using System Dynamics Rehan, Rashid Infrastructure Management Asset Management Sustainability Wastewater Collection Networks Water Distribution Networks System Dynamics Urban Water Systems Urban Wastewater Systems Management Framework The overall goal of this research is to develop an integrated system dynamics framework for sustainable management of municipal water and wastewater systems. Canadian municipalities have traditionally relied on grants received from senior levels of government to finance construction of water supply and wastewater collection infrastructure. User fees for water and wastewater services were determined so as to recover only the operating expenditures with no allowance to recoup the capital costs of infrastructure. As the infrastructure assets started approaching the end of their service life, investments needed to rehabilitate these assets were deferred in the expectation of receiving further grants for this purpose. Hence, a significant backlog of deteriorated infrastructure has accumulated over the years. Recently enacted regulations require that all expenditures incurred on provision of water and wastewater services should ultimately be financed from user fee based revenues. Another piece of legislation provides for establishment of service performance standards. Urban water and wastewater systems involve interconnections among physical infrastructure, financial, and socio-political factors. Several interacting feedback loops are formed due to these interconnections and render the management of water and wastewater infrastructure as a complex, dynamic problem. Existing asset management tools in the literature are found inadequate to capture the influence of feedback loops. A novel system dynamics approach is used to develop a demonstration model for water and wastewater network management. Model results for a case study show significance of feedback loops for financial sustainability of the system. For example, user fees have to be substantially increased to achieve financial sustainability, especially when price elasticity of water demand is considered. A detailed causal loop diagram for management of wastewater collection networks is presented. The causal loop diagram lays out qualitative causal relationships among system components and identifies multiple interacting feedback loops. Based on this causal loop diagram, a system dynamics model comprised of a wastewater pipes sector, a finance sector, and a consumers sector, is developed. Policy levers are included in the model to facilitate formulation of different financing and rehabilitation strategies for the wastewater collection network. Financial and service performance indicators included in the model allow comparison of different financing and rehabilitation strategies. Data requirements for implementation of the model are discussed. The wastewater collection network model is implemented for a case study of a medium-sized Canadian municipality with a substantial backlog of deteriorated pipes. A methodology for parameterization of the model using existing data sources is presented. Simulation results indicate that different financing strategies ranging from no borrowing to full utilization of debt capacity can achieve similar total life-cycle costs but with significantly varying impacts for consumers in terms of service performance and financial burden. A detailed causal loop diagram for management of a watermain distribution network is employed to identify feedback loops. The causal loop diagram is then developed into a system dynamics model comprised of watermain pipes, financial, and consumer sectors. Data requirements for implementation of the model are discussed. 2011-11-24T19:23:17Z 2011-11-24T19:23:17Z 2011-11-24T19:23:17Z 2011 2014-11-06T00:21:34Z Thesis or Dissertation http://hdl.handle.net/10012/6392 en
collection NDLTD
language en
sources NDLTD
topic Infrastructure Management
Asset Management
Sustainability
Wastewater Collection Networks
Water Distribution Networks
System Dynamics
Urban Water Systems
Urban Wastewater Systems
Management Framework
spellingShingle Infrastructure Management
Asset Management
Sustainability
Wastewater Collection Networks
Water Distribution Networks
System Dynamics
Urban Water Systems
Urban Wastewater Systems
Management Framework
Rehan, Rashid
Sustainable Municipal Water and Wastewater Management Using System Dynamics
description The overall goal of this research is to develop an integrated system dynamics framework for sustainable management of municipal water and wastewater systems. Canadian municipalities have traditionally relied on grants received from senior levels of government to finance construction of water supply and wastewater collection infrastructure. User fees for water and wastewater services were determined so as to recover only the operating expenditures with no allowance to recoup the capital costs of infrastructure. As the infrastructure assets started approaching the end of their service life, investments needed to rehabilitate these assets were deferred in the expectation of receiving further grants for this purpose. Hence, a significant backlog of deteriorated infrastructure has accumulated over the years. Recently enacted regulations require that all expenditures incurred on provision of water and wastewater services should ultimately be financed from user fee based revenues. Another piece of legislation provides for establishment of service performance standards. Urban water and wastewater systems involve interconnections among physical infrastructure, financial, and socio-political factors. Several interacting feedback loops are formed due to these interconnections and render the management of water and wastewater infrastructure as a complex, dynamic problem. Existing asset management tools in the literature are found inadequate to capture the influence of feedback loops. A novel system dynamics approach is used to develop a demonstration model for water and wastewater network management. Model results for a case study show significance of feedback loops for financial sustainability of the system. For example, user fees have to be substantially increased to achieve financial sustainability, especially when price elasticity of water demand is considered. A detailed causal loop diagram for management of wastewater collection networks is presented. The causal loop diagram lays out qualitative causal relationships among system components and identifies multiple interacting feedback loops. Based on this causal loop diagram, a system dynamics model comprised of a wastewater pipes sector, a finance sector, and a consumers sector, is developed. Policy levers are included in the model to facilitate formulation of different financing and rehabilitation strategies for the wastewater collection network. Financial and service performance indicators included in the model allow comparison of different financing and rehabilitation strategies. Data requirements for implementation of the model are discussed. The wastewater collection network model is implemented for a case study of a medium-sized Canadian municipality with a substantial backlog of deteriorated pipes. A methodology for parameterization of the model using existing data sources is presented. Simulation results indicate that different financing strategies ranging from no borrowing to full utilization of debt capacity can achieve similar total life-cycle costs but with significantly varying impacts for consumers in terms of service performance and financial burden. A detailed causal loop diagram for management of a watermain distribution network is employed to identify feedback loops. The causal loop diagram is then developed into a system dynamics model comprised of watermain pipes, financial, and consumer sectors. Data requirements for implementation of the model are discussed.
author Rehan, Rashid
author_facet Rehan, Rashid
author_sort Rehan, Rashid
title Sustainable Municipal Water and Wastewater Management Using System Dynamics
title_short Sustainable Municipal Water and Wastewater Management Using System Dynamics
title_full Sustainable Municipal Water and Wastewater Management Using System Dynamics
title_fullStr Sustainable Municipal Water and Wastewater Management Using System Dynamics
title_full_unstemmed Sustainable Municipal Water and Wastewater Management Using System Dynamics
title_sort sustainable municipal water and wastewater management using system dynamics
publishDate 2011
url http://hdl.handle.net/10012/6392
work_keys_str_mv AT rehanrashid sustainablemunicipalwaterandwastewatermanagementusingsystemdynamics
_version_ 1716670103913758720