Residual-Based Isotropic and Anisotropic Mesh Adaptation for Computational Fluid Dynamics

The accuracy of a fluid flow simulation depends not only on the numerical method used for discretizing the governing equations, but also on the distribution and topology of the mesh elements. Mesh adaptation is a technique for automatically modifying the mesh in order to improve the simulation accur...

Full description

Bibliographic Details
Main Author: Baserinia, Amir Reza
Language:en
Published: 2008
Subjects:
Online Access:http://hdl.handle.net/10012/3719
Description
Summary:The accuracy of a fluid flow simulation depends not only on the numerical method used for discretizing the governing equations, but also on the distribution and topology of the mesh elements. Mesh adaptation is a technique for automatically modifying the mesh in order to improve the simulation accuracy in an attempt to reduce the manual work required for mesh generation. The conventional approach to mesh adaptation is based on a feature-based criterion that identifies the distinctive features in the flow field such as shock waves and boundary layers. Although this approach has proved to be simple and effective in many CFD applications, its implementation may require a lot of trial and error for determining the appropriate criterion in certain applications. An alternative approach to mesh adaptation is the residual-based approach in which the discretization error of the fluid flow quantities across the mesh faces is used to construct an adaptation criterion. Although this approach provides a general framework for developing robust mesh adaptation criteria, its incorporation leads to significant computational overhead. The main objective of the thesis is to present a methodology for developing an appropriate mesh adaptation criterion for fluid flow problems that offers the simplicity of a feature-based criterion and the robustness of a residual-based criterion. This methodology is demonstrated in the context of a second-order accurate cell-centred finite volume method for simulating laminar steady incompressible flows of constant property fluids. In this methodology, the error of mass and momentum flows across the faces of each control volume are estimated with a Taylor series analysis. Then these face flow errors are used to construct the desired adaptation criteria for triangular isotropic meshes and quadrilateral anisotropic meshes. The adaptation results for the lid-driven cavity flow show that the solution error on the resulting adapted meshes is 80 to 90 percent lower than that of a uniform mesh with the same number of control volumes. The advantage of the proposed mesh adaptation method is the capability to produce meshes that lead to more accurate solutions compared to those of the conventional methods with approximately the same amount of computational effort.