Systematic Analysis of Cell Size Control in the Budding Yeast Saccharomyces cerevisiae

The budding yeast Saccharomyces cerevisiae exhibits exquisite control of cellular size in response to the nutritional composition of its environment. Size control is mediated at the G1/S phase transition, termed Start: passage through Start represents an irreversible commitment to cell division and...

Full description

Bibliographic Details
Main Author: Cook, Michael Alexander
Other Authors: Tyers, Mike
Language:en_ca
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/1807/65466
Description
Summary:The budding yeast Saccharomyces cerevisiae exhibits exquisite control of cellular size in response to the nutritional composition of its environment. Size control is mediated at the G1/S phase transition, termed Start: passage through Start represents an irreversible commitment to cell division and is contingent on achieving a critical size. When nutrients are plentiful, yeast increase their critical size set-point resulting in larger cells; in contrast, in poor nutrients, yeast pass Start at a smaller size. The genetic basis for nutrient-dependent size control and the means by which yeast sense their size remain elusive. One measure of growth potential is ribosome biogenesis, the rate of which correlates with cell size. I characterized a G-patch domain containing protein, Pfa1, which has been shown to activate the helicase activity of the pre-rRNA processing factor Prp43. Intriguingly, Pfa1 is multiply phosphorylated in response to inhibition of the TOR kinase, the central player in growth regulation. This phosphorylation occurs in a region required for Pfa1 function in ribosome biogenesis, independent of its role as a helicase activator. Consistently, phosphorylation correlates with loss of physical interactions with ribosome biogenesis and altered interactions with the ribosome. Mutation of these phosphorylation sites eliminates TOR-dependent phospho-regulation, and confers sensitivity to TOR inhibition. I propose a model wherein Pfa1 is phosphorylated in response to nutrient stress, leading to relocalization of essential processing factors, and inhibition of both ribosome biogenesis and tRNA maturation. Further, I constructed and verified a non-covalent short oligonucleotide barcode microarray platform, and applied it to genome-scale parallel analyses of both the DNA damage response and cell size control in S. cerevisiae. Through these studies, I uncovered novel connections between size control and numerous cellular processes including: the large subunit of the ribosome; the mitochondrial pH gradient; and proteins involved in oxidant-induced cell cycle arrest.