Targeting Plasmodium falciparum Heat Shock Protein 90 (PfHsp90): A Strategy to Reverse Antimalarial Resistance

Drug resistance is one of the major impediments to control Plasmodium falciparum malaria worldwide. Heat shock protein 90 (Hsp90) is an essential component of the buffering capacity of eukaryotic cells as a part of the stress response. P. falciparum is no different and requires Hsp90 to chaperone pr...

Full description

Bibliographic Details
Main Author: Shahinas, Dea
Other Authors: Pillai, Dylan Ravindran
Language:en_ca
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/1807/32885
Description
Summary:Drug resistance is one of the major impediments to control Plasmodium falciparum malaria worldwide. Heat shock protein 90 (Hsp90) is an essential component of the buffering capacity of eukaryotic cells as a part of the stress response. P. falciparum is no different and requires Hsp90 to chaperone proteins essential for cell cycle progression and drug resistance. Inhibition of P. falciparum Hsp90 (PfHsp90) may be able to not only cripple the parasite but also serve as an adjunctive antimalarial by circumventing drug resistance. The results presented in this thesis identify novel Hsp90 inhibitors that synergize with conventional antimicrobials, such as chloroquine (CQ), when used in combination. The objectives were to identify specific malaria Hsp90 inhibitors, the mechanism of the synergistic phenotype, and whether the strategy translates in vivo. To this end, the antimalarial activity of the purine analog PU-H71, and novel PfHsp90 inhibitors was tested. PU-H71 and the novel inhibitors APPA, harmine, and acrisorcin exhibited antimalarial activity in the nanomolar range and displayed synergistic activity with CQ. PU-H71 was able to reverse CQ resistance in a cell-based assay using the CQ-resistant strain W2. PU-H71 caused ring-stage arrest during the intra-erythrocytic cycle. Co-immunoprecipitation studies revealed that PfHsp90 interacts directly with the CQ resistance transporter (PfCRT). In the P. berghei mouse model of malaria, PU-H71 and harmine were able to reduce parasitemia and synergize with CQ. The interaction of PfHsp90 with PfCRT may underlie the synergistic phenotype. We conclude that PU-H71 and harmine are effective adjunctive antimalarial drugs that may be useful in combination therapies.