Modeling of Dielectric Barrier Discharge Plasma Actuators for Flow Control Simulations

Single-dielectric-barrier-discharge (SDBD) plasma actuators have shown much promise as an actuator for active flow control. Proper design and optimization of plasma actuators requires a model capable of accurately predicting the induced flow for a range of geometrical and excitation parameters. A nu...

Full description

Bibliographic Details
Main Author: Palmeiro, Denis
Other Authors: Lavoie, Philippe
Language:en_ca
Published: 2011
Subjects:
Online Access:http://hdl.handle.net/1807/31378
Description
Summary:Single-dielectric-barrier-discharge (SDBD) plasma actuators have shown much promise as an actuator for active flow control. Proper design and optimization of plasma actuators requires a model capable of accurately predicting the induced flow for a range of geometrical and excitation parameters. A number of models have been proposed in the literature, but have primarily been developed in isolation on independent geometries, frequencies and voltages. This study presents a comparison of four popular plasma actuator models over a range of actuation parameters for three different actuator geometries typical of actuators used in the literature. The results show that the hybrid model of Lemire & Vo (2011) is the only model capable of predicting the appropriate trends of the induced velocity for different geometries. Additionally, several modifications of this model have been integrated into a new proposed model for the plasma actuator, introducing a number of improvements.