The Role of the Di-arginine "R553AR555" Motif in Modulating Trafficking and Function of the Major Cystic Fibrosis Causing Mutant (DeltaF508-CFTR)

Cystic Fibrosis (CF) is an autosomal recessive disease that arises from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. The deletion of phenylalanine-508 (ΔF508-CFTR) is the most prevalent CF mutation and results in a misfolded protein that fails to exit the endopl...

Full description

Bibliographic Details
Main Author: Kim Chiaw, Patrick
Other Authors: Bear, Christine
Language:en_ca
Published: 2010
Subjects:
RXR
Online Access:http://hdl.handle.net/1807/26280
id ndltd-LACETR-oai-collectionscanada.gc.ca-OTU.1807-26280
record_format oai_dc
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-OTU.1807-262802013-11-02T03:42:23ZThe Role of the Di-arginine "R553AR555" Motif in Modulating Trafficking and Function of the Major Cystic Fibrosis Causing Mutant (DeltaF508-CFTR)Kim Chiaw, PatrickCystic FibrosisPeptide therapeuticsRXRdi-argininetraffickingF508CFTRcorrectorsCystic Fibrosis (CF) is an autosomal recessive disease that arises from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. The deletion of phenylalanine-508 (ΔF508-CFTR) is the most prevalent CF mutation and results in a misfolded protein that fails to exit the endoplasmic reticulum (ER). Previous studies demonstrated that mutation of a di-arginine based ER retention motif (R553AR555) in the first nucleotide binding domain (NBD1) rescues the trafficking defect of ΔF508-CFTR. We hypothesized that if the R553AR555 motif mediates retention of the ΔF508-CFTR protein, peptides that mimic this motif should antagonize mistrafficking mediated by aberrant exposure of the endogenous R553AR555 motif. We generated a peptide bearing the R553AR555 motif (CF-RXR) and conjugated it to the cell penetrating peptide Tat (CPP-CF-RXR) to facilitate intracellular delivery and investigated its efficacy in rescuing the mistrafficking and function of ΔF508-CFTR. Using a variety of biochemical and functional assays we demonstrate that the CPP-CF-RXR peptide is effective at increasing surface expression of ΔF508-CFTR in baby hamster kidney (BHK) and human embryonic kidney (HEK) cell lines. Furthermore, the increased surface expression is accompanied by an increase in its functional expression as a chloride channel. Using Ussing chamber assays, we demonstrate that the CPP-CF-RXR peptide improved ΔF508-CFTR channel function in respiratory epithelial tissues obtained from CF patients. Additionally, we investigated the effects of small molecules on mediating biosynthetic rescue of a ΔF508-CFTR construct bearing the additional mutations R553K and R555K (ΔFRK-CFTR) to inactivate the R553AR555 motif. Interestingly, mutation of the R553AR555 motif exerts an additive effect with correctors VRT-325 and Corrector 4a. Taken together, our data suggests that abnormal accessibility of the RXR motif present in NBD1 is a key determinant of the mistrafficking of the major CF causing mutant.Bear, Christine2010-112011-02-18T14:31:52ZNO_RESTRICTION2011-02-18T14:31:52Z2011-02-18T14:31:52ZThesishttp://hdl.handle.net/1807/26280en_ca
collection NDLTD
language en_ca
sources NDLTD
topic Cystic Fibrosis
Peptide therapeutics
RXR
di-arginine
trafficking
F508
CFTR
correctors
spellingShingle Cystic Fibrosis
Peptide therapeutics
RXR
di-arginine
trafficking
F508
CFTR
correctors
Kim Chiaw, Patrick
The Role of the Di-arginine "R553AR555" Motif in Modulating Trafficking and Function of the Major Cystic Fibrosis Causing Mutant (DeltaF508-CFTR)
description Cystic Fibrosis (CF) is an autosomal recessive disease that arises from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. The deletion of phenylalanine-508 (ΔF508-CFTR) is the most prevalent CF mutation and results in a misfolded protein that fails to exit the endoplasmic reticulum (ER). Previous studies demonstrated that mutation of a di-arginine based ER retention motif (R553AR555) in the first nucleotide binding domain (NBD1) rescues the trafficking defect of ΔF508-CFTR. We hypothesized that if the R553AR555 motif mediates retention of the ΔF508-CFTR protein, peptides that mimic this motif should antagonize mistrafficking mediated by aberrant exposure of the endogenous R553AR555 motif. We generated a peptide bearing the R553AR555 motif (CF-RXR) and conjugated it to the cell penetrating peptide Tat (CPP-CF-RXR) to facilitate intracellular delivery and investigated its efficacy in rescuing the mistrafficking and function of ΔF508-CFTR. Using a variety of biochemical and functional assays we demonstrate that the CPP-CF-RXR peptide is effective at increasing surface expression of ΔF508-CFTR in baby hamster kidney (BHK) and human embryonic kidney (HEK) cell lines. Furthermore, the increased surface expression is accompanied by an increase in its functional expression as a chloride channel. Using Ussing chamber assays, we demonstrate that the CPP-CF-RXR peptide improved ΔF508-CFTR channel function in respiratory epithelial tissues obtained from CF patients. Additionally, we investigated the effects of small molecules on mediating biosynthetic rescue of a ΔF508-CFTR construct bearing the additional mutations R553K and R555K (ΔFRK-CFTR) to inactivate the R553AR555 motif. Interestingly, mutation of the R553AR555 motif exerts an additive effect with correctors VRT-325 and Corrector 4a. Taken together, our data suggests that abnormal accessibility of the RXR motif present in NBD1 is a key determinant of the mistrafficking of the major CF causing mutant.
author2 Bear, Christine
author_facet Bear, Christine
Kim Chiaw, Patrick
author Kim Chiaw, Patrick
author_sort Kim Chiaw, Patrick
title The Role of the Di-arginine "R553AR555" Motif in Modulating Trafficking and Function of the Major Cystic Fibrosis Causing Mutant (DeltaF508-CFTR)
title_short The Role of the Di-arginine "R553AR555" Motif in Modulating Trafficking and Function of the Major Cystic Fibrosis Causing Mutant (DeltaF508-CFTR)
title_full The Role of the Di-arginine "R553AR555" Motif in Modulating Trafficking and Function of the Major Cystic Fibrosis Causing Mutant (DeltaF508-CFTR)
title_fullStr The Role of the Di-arginine "R553AR555" Motif in Modulating Trafficking and Function of the Major Cystic Fibrosis Causing Mutant (DeltaF508-CFTR)
title_full_unstemmed The Role of the Di-arginine "R553AR555" Motif in Modulating Trafficking and Function of the Major Cystic Fibrosis Causing Mutant (DeltaF508-CFTR)
title_sort role of the di-arginine "r553ar555" motif in modulating trafficking and function of the major cystic fibrosis causing mutant (deltaf508-cftr)
publishDate 2010
url http://hdl.handle.net/1807/26280
work_keys_str_mv AT kimchiawpatrick theroleofthediargininer553ar555motifinmodulatingtraffickingandfunctionofthemajorcysticfibrosiscausingmutantdeltaf508cftr
AT kimchiawpatrick roleofthediargininer553ar555motifinmodulatingtraffickingandfunctionofthemajorcysticfibrosiscausingmutantdeltaf508cftr
_version_ 1716612365976338432