Summary: | Cystic Fibrosis (CF) is an autosomal recessive disease that arises from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene. The deletion of phenylalanine-508 (ΔF508-CFTR) is the most prevalent CF mutation and results in a misfolded protein that fails to exit the endoplasmic reticulum (ER). Previous studies demonstrated that mutation of a di-arginine based ER retention motif (R553AR555) in the first nucleotide binding domain (NBD1) rescues the trafficking defect of ΔF508-CFTR. We hypothesized that if the R553AR555 motif mediates retention of the ΔF508-CFTR protein, peptides that mimic this motif should antagonize mistrafficking mediated by aberrant exposure of the endogenous R553AR555 motif. We generated a peptide bearing the R553AR555 motif (CF-RXR) and conjugated it to the cell penetrating peptide Tat (CPP-CF-RXR) to facilitate intracellular delivery and investigated its efficacy in rescuing the mistrafficking and function of ΔF508-CFTR. Using a variety of biochemical and functional assays we demonstrate that the CPP-CF-RXR peptide is effective at increasing surface expression of ΔF508-CFTR in baby hamster kidney (BHK) and human embryonic kidney (HEK) cell lines. Furthermore, the increased surface expression is accompanied by an increase in its functional expression as a chloride channel. Using Ussing chamber assays, we demonstrate that the CPP-CF-RXR peptide improved ΔF508-CFTR channel function in respiratory epithelial tissues obtained from CF patients. Additionally, we investigated the effects of small molecules on mediating biosynthetic rescue of a ΔF508-CFTR construct bearing the additional mutations R553K and R555K (ΔFRK-CFTR) to inactivate the R553AR555 motif. Interestingly, mutation of the R553AR555 motif exerts an additive effect with correctors VRT-325 and Corrector 4a. Taken together, our data suggests that abnormal accessibility of the RXR motif present in NBD1 is a key determinant of the mistrafficking of the major CF causing mutant.
|