A Membrane Separation Process for Biodiesel Purification
In the production of biodiesel via the transesterification of vegetable oils, purification to international standards is challenging. A key measure of biodiesel quality is the level of free glycerol in the biodiesel. In order to remove glycerol from fatty acid methyl ester (FAME or biodiesel), a mem...
Main Author: | |
---|---|
Language: | en |
Published: |
2011
|
Subjects: | |
Online Access: | http://hdl.handle.net/10393/19730 |
id |
ndltd-LACETR-oai-collectionscanada.gc.ca-OOU.-en#10393-19730 |
---|---|
record_format |
oai_dc |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
topic |
Ultrafiltration Microfiltration Biodiesel Separation Fatty acid methyl ester Methanol Glycerol Dynamic light scattering Water solubility Critical and limiting flux |
spellingShingle |
Ultrafiltration Microfiltration Biodiesel Separation Fatty acid methyl ester Methanol Glycerol Dynamic light scattering Water solubility Critical and limiting flux Saleh, Jehad A Membrane Separation Process for Biodiesel Purification |
description |
In the production of biodiesel via the transesterification of vegetable oils, purification to international standards is challenging. A key measure of biodiesel quality is the level of free glycerol in the biodiesel. In order to remove glycerol from fatty acid methyl ester (FAME or biodiesel), a membrane separation setup was tested. The main objective of this thesis was to develop a membrane process for the separation of free glycerol dispersed in FAME after completion of the transesterification reaction and to investigate the effect of different factors on glycerol removal. These factors included membrane pore size, pressure, temperature, and methanol, soap and water content.
First, a study of the effect of different materials present in the transesterification reaction, such as water, soap, and methanol, on the final free glycerol separation was performed using a modified polyacrylonitrile (PAN) membrane, with 100 kD (ultrafiltration) molecular weight cut off for all runs at 25°C. Results showed low concentrations of water had a considerable effect in removing glycerol from the FAME. The mechanism of separation of free glycerol from FAME was due to the removal of an ultrafine dispersed glycerol-rich phase present in the untreated (or raw) FAME. The size of the droplets and the free glycerol separation both increased with increasing water content of the FAME.
Next, three types of polymeric membranes in the ultrafiltration range with different molecular weight cut off, were tested at three fixed operating pressures and three operating temperatures (0, 5 and 25oC) to remove the free glycerol from a biodiesel reactor effluent. The ASTM standard for free glycerol concentration was met for the experiments performed at 25°C. The results of this study indicate that glycerol could be separated from raw FAME to meet ASTM and EN standards at methanol feed concentrations of up to 3 mass%. The process was demonstrated to rely on the formation of a dynamic polar layer on the membrane surface.
Ceramic membranes of different pore sizes (0.05 µm (ultrafiltration (UF) range) and 0.2 µm (microfiltration (MF) range)) were used to treat raw FAME directly using the membrane separation set up at temperatures of 0, 5 and 25°C. The results were encouraging for the 0.05 µm pore size membrane at the highest temperature (25°C). The effect of temperature on glycerol removal was evident from its relation with the concentration factor (CF). Higher temperatures promoted the achievement of the appropriate CF value sooner for faster separation. Membrane pore size was also found to affect separation performance.
A subsequent study revealed the effect of different variables on the size of the glycerol droplets using dynamic light scattering (DLS). A key parameter in the use of membrane separation technology is the size of the glycerol droplets and the influence of other components such as water, methanol and soaps on that droplet size. The effect of water, methanol, soap and glycerol on the size of suspended glycerol droplets in FAME was studied using a 3-level Box-Behnken experimental design technique. Standard statistical analysis techniques revealed the significant effect of water and glycerol on increasing droplet size while methanol and soap served to reduce the droplet size.
Finally, a study on the effect of trans-membrane pressure (TMP) at different water concentrations in the FAME phase on glycerol removal using UF (0.03 µm pore size, polyethersulfone (PES)) and MF (0.1 and 0.22 µm pore sizes, PES) membranes at 25, 40 and 60°C was performed. Results showed that running at 25°C for the two membrane types produced the best results for glycerol removal and exceeded the ASTM and EN standards. An enhancement of glycerol removal was found by adding small amounts of water up to the maximum solubility limit in biodiesel. An increase in temperature resulted in an increase in the solubility of water in the FAME and less effective glycerol removal. Application of cake filtration theory and a gel layer model showed that the gel layer on the membrane surface is not compressible and the specific cake resistance and gel layer concentration decrease with increasing temperature. An approximate value for the limiting (steady-state) flux was reported and it was found that the highest fluxes were obtained at the lowest initial water concentrations at fixed temperatures.
In conclusion, dispersed glycerol can be successfully removed from raw FAME (untreated FAME) using a membrane separation system to meet the ASTM biodiesel fuel standards. The addition of water close to the solubility limit to the FAME mixture enables the formation of larger glycerol droplets and makes the separation of these droplets straightforward. |
author |
Saleh, Jehad |
author_facet |
Saleh, Jehad |
author_sort |
Saleh, Jehad |
title |
A Membrane Separation Process for Biodiesel Purification |
title_short |
A Membrane Separation Process for Biodiesel Purification |
title_full |
A Membrane Separation Process for Biodiesel Purification |
title_fullStr |
A Membrane Separation Process for Biodiesel Purification |
title_full_unstemmed |
A Membrane Separation Process for Biodiesel Purification |
title_sort |
membrane separation process for biodiesel purification |
publishDate |
2011 |
url |
http://hdl.handle.net/10393/19730 |
work_keys_str_mv |
AT salehjehad amembraneseparationprocessforbiodieselpurification AT salehjehad membraneseparationprocessforbiodieselpurification |
_version_ |
1716575361785921536 |
spelling |
ndltd-LACETR-oai-collectionscanada.gc.ca-OOU.-en#10393-197302013-01-11T13:32:46ZA Membrane Separation Process for Biodiesel PurificationSaleh, JehadUltrafiltrationMicrofiltrationBiodieselSeparationFatty acid methyl esterMethanolGlycerolDynamic light scatteringWater solubilityCritical and limiting fluxIn the production of biodiesel via the transesterification of vegetable oils, purification to international standards is challenging. A key measure of biodiesel quality is the level of free glycerol in the biodiesel. In order to remove glycerol from fatty acid methyl ester (FAME or biodiesel), a membrane separation setup was tested. The main objective of this thesis was to develop a membrane process for the separation of free glycerol dispersed in FAME after completion of the transesterification reaction and to investigate the effect of different factors on glycerol removal. These factors included membrane pore size, pressure, temperature, and methanol, soap and water content. First, a study of the effect of different materials present in the transesterification reaction, such as water, soap, and methanol, on the final free glycerol separation was performed using a modified polyacrylonitrile (PAN) membrane, with 100 kD (ultrafiltration) molecular weight cut off for all runs at 25°C. Results showed low concentrations of water had a considerable effect in removing glycerol from the FAME. The mechanism of separation of free glycerol from FAME was due to the removal of an ultrafine dispersed glycerol-rich phase present in the untreated (or raw) FAME. The size of the droplets and the free glycerol separation both increased with increasing water content of the FAME. Next, three types of polymeric membranes in the ultrafiltration range with different molecular weight cut off, were tested at three fixed operating pressures and three operating temperatures (0, 5 and 25oC) to remove the free glycerol from a biodiesel reactor effluent. The ASTM standard for free glycerol concentration was met for the experiments performed at 25°C. The results of this study indicate that glycerol could be separated from raw FAME to meet ASTM and EN standards at methanol feed concentrations of up to 3 mass%. The process was demonstrated to rely on the formation of a dynamic polar layer on the membrane surface. Ceramic membranes of different pore sizes (0.05 µm (ultrafiltration (UF) range) and 0.2 µm (microfiltration (MF) range)) were used to treat raw FAME directly using the membrane separation set up at temperatures of 0, 5 and 25°C. The results were encouraging for the 0.05 µm pore size membrane at the highest temperature (25°C). The effect of temperature on glycerol removal was evident from its relation with the concentration factor (CF). Higher temperatures promoted the achievement of the appropriate CF value sooner for faster separation. Membrane pore size was also found to affect separation performance. A subsequent study revealed the effect of different variables on the size of the glycerol droplets using dynamic light scattering (DLS). A key parameter in the use of membrane separation technology is the size of the glycerol droplets and the influence of other components such as water, methanol and soaps on that droplet size. The effect of water, methanol, soap and glycerol on the size of suspended glycerol droplets in FAME was studied using a 3-level Box-Behnken experimental design technique. Standard statistical analysis techniques revealed the significant effect of water and glycerol on increasing droplet size while methanol and soap served to reduce the droplet size. Finally, a study on the effect of trans-membrane pressure (TMP) at different water concentrations in the FAME phase on glycerol removal using UF (0.03 µm pore size, polyethersulfone (PES)) and MF (0.1 and 0.22 µm pore sizes, PES) membranes at 25, 40 and 60°C was performed. Results showed that running at 25°C for the two membrane types produced the best results for glycerol removal and exceeded the ASTM and EN standards. An enhancement of glycerol removal was found by adding small amounts of water up to the maximum solubility limit in biodiesel. An increase in temperature resulted in an increase in the solubility of water in the FAME and less effective glycerol removal. Application of cake filtration theory and a gel layer model showed that the gel layer on the membrane surface is not compressible and the specific cake resistance and gel layer concentration decrease with increasing temperature. An approximate value for the limiting (steady-state) flux was reported and it was found that the highest fluxes were obtained at the lowest initial water concentrations at fixed temperatures. In conclusion, dispersed glycerol can be successfully removed from raw FAME (untreated FAME) using a membrane separation system to meet the ASTM biodiesel fuel standards. The addition of water close to the solubility limit to the FAME mixture enables the formation of larger glycerol droplets and makes the separation of these droplets straightforward.2011-02-02T19:52:47Z2011-02-02T19:52:47Z20112011-02-02thesishttp://hdl.handle.net/10393/19730en |