The Paradoxical Roles of Cell Death Pathways in Immune Cells
Cell death plays a vital role throughout the immune response, from the onset of inflammation to the elimination of primed T cells. Understanding the regulation of cell death within immune cells is of vital importance to understanding the immune system and developing therapies against various immune-...
Main Author: | |
---|---|
Language: | en |
Published: |
2013
|
Subjects: | |
Online Access: | http://hdl.handle.net/10393/24331 |
id |
ndltd-LACETR-oai-collectionscanada.gc.ca-OOU.#10393-24331 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-LACETR-oai-collectionscanada.gc.ca-OOU.#10393-243312014-06-14T03:49:58ZThe Paradoxical Roles of Cell Death Pathways in Immune CellsMcComb, ScottCell deathApoptosisNecroptosisImmunityMacrophageT cellsBacterial pathogensCell death plays a vital role throughout the immune response, from the onset of inflammation to the elimination of primed T cells. Understanding the regulation of cell death within immune cells is of vital importance to understanding the immune system and developing therapies against various immune-disorders. In this thesis I have investigated the regulation of cell death and its functional role in of the innate and adaptive arms of the immune system. The mechanisms that govern expansion and contraction of antigen stimulated CD8+ T cells are not well understood. In the first section of this thesis, I show that caspase-3 becomes activated in proliferating CD8+ proliferation, yet this does not result in cell death. I used both in vivo and in vitro models to demonstrate that caspase-3 activation is specifically driven by antigen presentation and not inflammation, and that it likely plays a role in promoting T cell proliferation. Next, I present novel data regarding the regulation of a newly identified form of programmed cell death via necrosis, known as necroptosis. I show that the cellular inhibitor of apoptosis (cIAP) proteins act to limit activation of key necroptosis proteins in macrophage cells. Furthermore, I show that necroptosis can be exploited by intracellular bacterial pathogens to escape removal by the immune system. I also demonstrate that necroptosis is highly intertwined with the pathway of inflammation, and the autocrine production of type-I interferon constitutes a vital positive feedback loop in the induction of inflammatory cell death. In the final section of my thesis work, I delve into the specific regulation of Rip1 kinase and demonstrate that in addition to previously demonstrated regulation by caspase-8, cathepsins are also able to cleave Rip1 kinase and limit necroptosis. This thesis presents a wide variety of novel data regarding the regulation of cell death within immune cells. In total, the results reveal a picture of two divergent forms of programmed cell death, apoptosis and necroptosis. Through improving the understanding of the cross-regulation of these two key cell death pathways this work aims to improve the understanding of the immune function.2013-07-19T19:52:17Z2013-07-19T19:52:17Z20132013-07-19Thèse / Thesishttp://hdl.handle.net/10393/24331en |
collection |
NDLTD |
language |
en |
sources |
NDLTD |
topic |
Cell death Apoptosis Necroptosis Immunity Macrophage T cells Bacterial pathogens |
spellingShingle |
Cell death Apoptosis Necroptosis Immunity Macrophage T cells Bacterial pathogens McComb, Scott The Paradoxical Roles of Cell Death Pathways in Immune Cells |
description |
Cell death plays a vital role throughout the immune response, from the onset of inflammation to the elimination of primed T cells. Understanding the regulation of cell death within immune cells is of vital importance to understanding the immune system and developing therapies against various immune-disorders. In this thesis I have investigated the regulation of cell death and its functional role in of the innate and adaptive arms of the immune system.
The mechanisms that govern expansion and contraction of antigen stimulated CD8+ T cells are not well understood. In the first section of this thesis, I show that caspase-3 becomes activated in proliferating CD8+ proliferation, yet this does not result in cell death. I used both in vivo and in vitro models to demonstrate that caspase-3 activation is specifically driven by antigen presentation and not inflammation, and that it likely plays a role in promoting T cell proliferation.
Next, I present novel data regarding the regulation of a newly identified form of programmed cell death via necrosis, known as necroptosis. I show that the cellular inhibitor of apoptosis (cIAP) proteins act to limit activation of key necroptosis proteins in macrophage cells. Furthermore, I show that necroptosis can be exploited by intracellular bacterial pathogens to escape removal by the immune system. I also demonstrate that necroptosis is highly intertwined with the pathway of inflammation, and the autocrine production of type-I interferon constitutes a vital positive feedback loop in the induction of inflammatory cell death. In the final section of my thesis work, I delve into
the specific regulation of Rip1 kinase and demonstrate that in addition to previously demonstrated regulation by caspase-8, cathepsins are also able to cleave Rip1 kinase and limit necroptosis.
This thesis presents a wide variety of novel data regarding the regulation of cell death within immune cells. In total, the results reveal a picture of two divergent forms of programmed cell death, apoptosis and necroptosis. Through improving the understanding of the cross-regulation of these two key cell death pathways this work aims to improve the understanding of the immune function. |
author |
McComb, Scott |
author_facet |
McComb, Scott |
author_sort |
McComb, Scott |
title |
The Paradoxical Roles of Cell Death Pathways in Immune Cells |
title_short |
The Paradoxical Roles of Cell Death Pathways in Immune Cells |
title_full |
The Paradoxical Roles of Cell Death Pathways in Immune Cells |
title_fullStr |
The Paradoxical Roles of Cell Death Pathways in Immune Cells |
title_full_unstemmed |
The Paradoxical Roles of Cell Death Pathways in Immune Cells |
title_sort |
paradoxical roles of cell death pathways in immune cells |
publishDate |
2013 |
url |
http://hdl.handle.net/10393/24331 |
work_keys_str_mv |
AT mccombscott theparadoxicalrolesofcelldeathpathwaysinimmunecells AT mccombscott paradoxicalrolesofcelldeathpathwaysinimmunecells |
_version_ |
1716669610690871296 |