Summary: | Polyhedral boranes and carboranes have acquired their popularity for constructing meso and nano-size structures for an array of applications from pharmaceuticals to material science. These three-dimensional boranes range from 4 to 22 boron atom per molecules with delocalized bonding analogous to aromatic compounds. The unique vibrational spectroscopy of the BH function allows for possible application of these species to bioimaging. Silver nanoparticles functionalized with ortho-carboranes have been reported for bioimaging using Surface-enhanced Raman scattering (SERS). The silver nanoparticles were functionalized with antibodies specific to cancer cell receptors. Bonding thiol-substituted carboranes to these particles allowed for observation of enhanced Raman signals as the imaging mode. Here, attempts to synthesize second generation carborane molecules with additional Raman-active group such as nitrile were conducted. Hybrid diblock copolymers have the ability to self-assemble in different morphological patterns depending on the type and ratio of monomers and the compatibilities in various solvents. Linear hybrid diblock copolymers were synthesized by ring-opening metathesis polymerization (ROMP) reactions with norbornenyl-based decaborane and various amounts of norbornene and norbornenyl-ester derivative monomers. Their self-assembly behaviour in various solvents were characterized by NMR, TGA, DSC, and SEM. P(norbornene)60-b-p(norbornenyl-decaborane)40 polymers showed lamellar morphology patterns when slowly evaporated from chloroform. Based on results and the SEM images, a few of these diblock copolymers were used as ceramic precursors and pyrolyzed to elevated temperatures forming boron nitride and boron carbonitride nano-ordered ceramics
|