Summary: | Coagulase negative staphylococci (CoNS) are the most prevalent bacterial contaminants of platelet concentrates (PCs), and have been implicated in severe and fatal transfusion reactions. Of this group, Staphylococcus epidermidis is most frequently identified. The preliminary objective of this thesis was to confirm that S. epidermidis could form biofilms under platelet storage conditions. This was achieved using a modified crystal violet staining assay to detect plastic-adherent bacterial cells and examination of attachment processes by scanning electron microscopy. A collection of CoNS isolated from PCs obtained from reportedly healthy donors was then assessed for biofilm-forming potential at the genetic and phenotypic level. Despite the presumable commensal origin of these isolates, a high proportion of S. epidermidis strains displayed a biofilm positive phenotype.
The threat of S. epidermidis biofilm formation during platelet storage identified herein signifies that any alterations made to platelet storage protocols should be evaluated with consideration of this risk. The advent of platelet additive solutions (PASs) as an alternative to plasma for PC storage provides a relevant example, since little is known about the effect of PAS on contaminant bacteria, and vice versa. Growth and biofilm formation by S. epidermidis and the Gram-negative bacterium Serratia liquefaciens were measured in PAS- or plasma-PCs over 5 days, simulating standard platelet storage conditions, after initial inoculation with low, clinically relevant bacterial concentrations. Assays for platelet quality were performed simultaneously. Only S. liquefaciens exhibited a slower doubling time in plasma-PCs than in PAS-PCs. Biofilm formation by both species was reduced during storage in PAS-PCs, increasing bacteria availability for detection. Although S. liquefaciens adversely affected platelet quality in both media, S. epidermidis contamination did not. Ultimately, culture-based detection remains the earliest indicator of bacterial presence in PAS-PCs.
Lastly, since formation of platelet-bacteria aggregates is largely based on receptor-ligand interactions, it was postulated that biofilm formation by contaminant bacteria could be abrogated by receptor shielding. Methoxypoly(ethylene glycol) was applied to covalently modify the platelet surface using a process termed ‘PEGylation’. It is herein demonstrated that PEGylation of PCs inoculated with S. epidermidis results in significantly reduced bacterial binding and biofilm formation during platelet storage.
|