Summary: | Nitrogen-containing molecules are ubiquitous in both natural products and pharmaceutical drugs, thus an efficient method for the formation of these motifs is of great importance. Hydroamination, that is the addition of an N-H bond across an unsaturated carbon-carbon bond of an alkene or alkyne, stands out as a potential approach to obtain such molecules. To date, most research in this area relies on transition-metal catalysis to enable such reactivity. In efforts directed towards metal-free alternatives, we have developed a simple, metal-free hydroamination of alkenes using hydrazides. Further investigation into the corresponding reactivity of alkynes with hydrazides has provided access to novel azomethine imine products. In Chapter 2, expansion of the substrate scope with respect to the intramolecular hydroamination of alkenes using hydrazides, as well as studies directed towards elucidation of the mechanism of this reaction will be presented. The intramolecular hydroamination of alkynes using hydrazides and methods to access and isolate the azomethine imine products formed will be discussed in Chapter 3.
|