Structural and functional characterization of E2A:KIX interactions in leukemia

The E2A proteins are transcription factors critical for B-lymphopoiesis. A chromosomal translocation involving the E2A gene promotes acute lymphoblastic leukemia (ALL) through expression of the oncoprotein E2A-PBX1. Two activation domains of E2A-PBX1, AD1 and AD2, have been implicated in transcripti...

Full description

Bibliographic Details
Main Author: Denis, Christopher
Other Authors: Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Language:en
en
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/1974/7469
id ndltd-LACETR-oai-collectionscanada.gc.ca-OKQ.1974-7469
record_format oai_dc
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-OKQ.1974-74692013-12-20T03:40:54ZStructural and functional characterization of E2A:KIX interactions in leukemiaDenis, Christopherleukemiaprotein-protein interactionsNMR spectroscopystructural biologyThe E2A proteins are transcription factors critical for B-lymphopoiesis. A chromosomal translocation involving the E2A gene promotes acute lymphoblastic leukemia (ALL) through expression of the oncoprotein E2A-PBX1. Two activation domains of E2A-PBX1, AD1 and AD2, have been implicated in transcription mediated by recruitment of the transcriptional co-activator CBP/p300. A motif has been identified within AD1 that is important for recruiting CBP/p300, known as PCET. This recruitment requires an interaction between the activation domains of E2A-PBX1 and the KIX domain of CBP/p300. The KIX domain recognizes a generic ΦXXΦΦ sequence (Φ corresponds to a hydrophobic residue) found in the activation domains of numerous transcription factors. Mutation of leucine 20 in PCET has been shown to abrogate ex vivo immortalization of murine bone marrow and oncogenesis in a murine bone marrow transplantation model. A similar sequence is also found in AD2 and is implicated in E2A transcriptional activity and recruitment of CBP/p300. The structural details of these interactions remain largely unknown. NMR spectroscopy was used to determine the solution structure of the PCET:KIX complex, and the functional consequences of the Leu20Ala mutation were structurally rationalized. Other PCET mutations informed by this structure were tested and correlations were found between in vitro binding affinities and both transcriptional activation and immortalization. The binding site of the ΦXXΦΦ-containing E2A AD2 peptide was mapped to the same site on the KIX domain used by the PCET motif. A model of this complex was generated and mutations were tested using a similar approach as was used for PCET. E2A AD2 binds the KIX domain with lower affinity than the PCET motif and is not required for immortalizing bone marrow. A mutation that increases the affinity of E2A AD2 for the KIX domain to levels approaching that seen for the PCET:KIX interaction restores transcriptional activation and immortalization, demonstrating that immortalization by E2A-PBX1 is an affinity dependent process involving the KIX domain of CBP/p300. These studies indicate that the activation domains of E2A-PBX1 serve to support the in vivo function of the oncoprotein and that the PCET:KIX complex is a potential target for novel therapeutics in E2A-PBX1+ leukemia.Thesis (Ph.D, Biochemistry) -- Queen's University, 2012-09-13 13:30:48.848Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))2012-09-13 13:30:48.8482012-09-15T18:06:58Z2012-09-15T18:06:58Z2012-09-15Thesishttp://hdl.handle.net/1974/7469enenCanadian thesesThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
collection NDLTD
language en
en
sources NDLTD
topic leukemia
protein-protein interactions
NMR spectroscopy
structural biology
spellingShingle leukemia
protein-protein interactions
NMR spectroscopy
structural biology
Denis, Christopher
Structural and functional characterization of E2A:KIX interactions in leukemia
description The E2A proteins are transcription factors critical for B-lymphopoiesis. A chromosomal translocation involving the E2A gene promotes acute lymphoblastic leukemia (ALL) through expression of the oncoprotein E2A-PBX1. Two activation domains of E2A-PBX1, AD1 and AD2, have been implicated in transcription mediated by recruitment of the transcriptional co-activator CBP/p300. A motif has been identified within AD1 that is important for recruiting CBP/p300, known as PCET. This recruitment requires an interaction between the activation domains of E2A-PBX1 and the KIX domain of CBP/p300. The KIX domain recognizes a generic ΦXXΦΦ sequence (Φ corresponds to a hydrophobic residue) found in the activation domains of numerous transcription factors. Mutation of leucine 20 in PCET has been shown to abrogate ex vivo immortalization of murine bone marrow and oncogenesis in a murine bone marrow transplantation model. A similar sequence is also found in AD2 and is implicated in E2A transcriptional activity and recruitment of CBP/p300. The structural details of these interactions remain largely unknown. NMR spectroscopy was used to determine the solution structure of the PCET:KIX complex, and the functional consequences of the Leu20Ala mutation were structurally rationalized. Other PCET mutations informed by this structure were tested and correlations were found between in vitro binding affinities and both transcriptional activation and immortalization. The binding site of the ΦXXΦΦ-containing E2A AD2 peptide was mapped to the same site on the KIX domain used by the PCET motif. A model of this complex was generated and mutations were tested using a similar approach as was used for PCET. E2A AD2 binds the KIX domain with lower affinity than the PCET motif and is not required for immortalizing bone marrow. A mutation that increases the affinity of E2A AD2 for the KIX domain to levels approaching that seen for the PCET:KIX interaction restores transcriptional activation and immortalization, demonstrating that immortalization by E2A-PBX1 is an affinity dependent process involving the KIX domain of CBP/p300. These studies indicate that the activation domains of E2A-PBX1 serve to support the in vivo function of the oncoprotein and that the PCET:KIX complex is a potential target for novel therapeutics in E2A-PBX1+ leukemia. === Thesis (Ph.D, Biochemistry) -- Queen's University, 2012-09-13 13:30:48.848
author2 Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
author_facet Queen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Denis, Christopher
author Denis, Christopher
author_sort Denis, Christopher
title Structural and functional characterization of E2A:KIX interactions in leukemia
title_short Structural and functional characterization of E2A:KIX interactions in leukemia
title_full Structural and functional characterization of E2A:KIX interactions in leukemia
title_fullStr Structural and functional characterization of E2A:KIX interactions in leukemia
title_full_unstemmed Structural and functional characterization of E2A:KIX interactions in leukemia
title_sort structural and functional characterization of e2a:kix interactions in leukemia
publishDate 2012
url http://hdl.handle.net/1974/7469
work_keys_str_mv AT denischristopher structuralandfunctionalcharacterizationofe2akixinteractionsinleukemia
_version_ 1716621469368188928