The Modification, Design and Development of a Scaled-down Industrial Furnace with Interchanging Burners for Academic Use
Industry is heavily dependent on the process of combustion and with a projected rapid increase for the demand of combustion-derived energy it is imperative to expose a new age of engineering professionals to the discipline of combustion engineering. One purpose of this study was to modify an exist...
Main Author: | |
---|---|
Other Authors: | |
Language: | en en |
Published: |
2010
|
Subjects: | |
Online Access: | http://hdl.handle.net/1974/5929 |
Summary: | Industry is heavily dependent on the process of combustion and with a projected rapid increase for the demand of combustion-derived energy it is imperative to expose a new age of engineering professionals to the discipline of combustion engineering.
One purpose of this study was to modify an existing scaled-down industrial furnace and to retrofit it with the ability to interchange burners for academic application and combustion testing. A number of available industrial burners are presented and their qualities and drawbacks discussed. The modification of an existing scaled-down industrial tunnel furnace is proposed in this work with the objective of providing users with exposure to the control and safe operating strategies associated with industrial combustion.
The furnace system simulates a square-shaped tunnel geometry commonly found in industrial applications. A single nozzle mix burner is mounted along the furnace axis and operated with supporting equipment such as a burner control safeguard, a gas train, and an air supply. Details of the furnace are provided in this work. The concept of radiative heat transfer within a combustion enclosure is demonstrated through furnace simulation with Hottel’s Zone Method. === Thesis (Master, Chemical Engineering) -- Queen's University, 2010-07-19 09:50:22.797 |
---|