THE EVOLUTION OF ORGANELLE GENOME ARCHITECTURE

Genomic sequence data from the three domains of life have revealed a remarkable diversity of genome architectures. The relative contributions of adaptive versus non-adaptive processes in shaping this diversity are poorly understood and hotly debated. This thesis investigates the evolution of genome...

Full description

Bibliographic Details
Main Author: Smith, David Roy
Language:en
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/10222/13028
id ndltd-LACETR-oai-collectionscanada.gc.ca-NSHD.ca#10222-13028
record_format oai_dc
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-NSHD.ca#10222-130282013-10-04T04:12:51ZTHE EVOLUTION OF ORGANELLE GENOME ARCHITECTURESmith, David Roygeneticsgenomicsevolutiongreen algaeGenomic sequence data from the three domains of life have revealed a remarkable diversity of genome architectures. The relative contributions of adaptive versus non-adaptive processes in shaping this diversity are poorly understood and hotly debated. This thesis investigates the evolution of genome architecture in the Chloroplastida (i.e., green algae and land plants), with a particular focus on the mitochondrial and plastid genomes of chlamydomonadalean algae (Chlorophyceae, Chlorophyta). Much of the work presented here describes unprecedented extremes in: i) genome compactness (i.e., the fraction of noncoding DNA in a genome), ii) genome conformation (e.g., circular vs. linear vs. linear fragmented genomes), iii) intron and repeat content; and iv) nucleotide-composition landscape (e.g., GC-rich vs. AT-rich genomes). These data are then combined with intra-population nucleotide diversity data to explore the degree to which non-adaptive forces, such as random genetic drift and mutation rate, have shaped the organelle and nuclear genomes of the Chloroplastida. The major conclusions from this dissertation are that chlamydomonadalean algae show a much greater variation in organelle genome architecture than previously thought — this group boasts some of the most unusual mitochondrial and plastid genomes from all eukaryotes — and that the majority of this variation can be explained in non-adaptive terms.2010-08-31T19:29:05Z2010-08-31T19:29:05Z2010-08-312010-08-13http://hdl.handle.net/10222/13028en
collection NDLTD
language en
sources NDLTD
topic genetics
genomics
evolution
green algae
spellingShingle genetics
genomics
evolution
green algae
Smith, David Roy
THE EVOLUTION OF ORGANELLE GENOME ARCHITECTURE
description Genomic sequence data from the three domains of life have revealed a remarkable diversity of genome architectures. The relative contributions of adaptive versus non-adaptive processes in shaping this diversity are poorly understood and hotly debated. This thesis investigates the evolution of genome architecture in the Chloroplastida (i.e., green algae and land plants), with a particular focus on the mitochondrial and plastid genomes of chlamydomonadalean algae (Chlorophyceae, Chlorophyta). Much of the work presented here describes unprecedented extremes in: i) genome compactness (i.e., the fraction of noncoding DNA in a genome), ii) genome conformation (e.g., circular vs. linear vs. linear fragmented genomes), iii) intron and repeat content; and iv) nucleotide-composition landscape (e.g., GC-rich vs. AT-rich genomes). These data are then combined with intra-population nucleotide diversity data to explore the degree to which non-adaptive forces, such as random genetic drift and mutation rate, have shaped the organelle and nuclear genomes of the Chloroplastida. The major conclusions from this dissertation are that chlamydomonadalean algae show a much greater variation in organelle genome architecture than previously thought — this group boasts some of the most unusual mitochondrial and plastid genomes from all eukaryotes — and that the majority of this variation can be explained in non-adaptive terms.
author Smith, David Roy
author_facet Smith, David Roy
author_sort Smith, David Roy
title THE EVOLUTION OF ORGANELLE GENOME ARCHITECTURE
title_short THE EVOLUTION OF ORGANELLE GENOME ARCHITECTURE
title_full THE EVOLUTION OF ORGANELLE GENOME ARCHITECTURE
title_fullStr THE EVOLUTION OF ORGANELLE GENOME ARCHITECTURE
title_full_unstemmed THE EVOLUTION OF ORGANELLE GENOME ARCHITECTURE
title_sort evolution of organelle genome architecture
publishDate 2010
url http://hdl.handle.net/10222/13028
work_keys_str_mv AT smithdavidroy theevolutionoforganellegenomearchitecture
AT smithdavidroy evolutionoforganellegenomearchitecture
_version_ 1716601219855679488