Pattern recognition techniques as applied to the classification of convective storm cells

This thesis investigates the role of preprocessing, rejection classes and ample relabelling in the classification of convective storm cells. This problem is representative of pattern recognition problems displaying high data dimensionality, small sample sets, and imperfect sample labelling. A batter...

Full description

Bibliographic Details
Main Author: Alexiuk, Mark Douglas
Format: Others
Language:en
en_US
Published: 2007
Online Access:http://hdl.handle.net/1993/2245
id ndltd-LACETR-oai-collectionscanada.gc.ca-MWU.anitoba.ca-dspace#1993-2245
record_format oai_dc
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-MWU.anitoba.ca-dspace#1993-22452013-01-11T13:31:12ZAlexiuk, Mark Douglas2007-05-25T18:33:32Z2007-05-25T18:33:32Z1999-09-01T00:00:00Zhttp://hdl.handle.net/1993/2245This thesis investigates the role of preprocessing, rejection classes and ample relabelling in the classification of convective storm cells. This problem is representative of pattern recognition problems displaying high data dimensionality, small sample sets, and imperfect sample labelling. A battery of standard classifiers are compared using preprocessing strategies such as interquartile membership, principal and independent components. Rejection classes initiate the trade-off between improvement of performance and exhaustive classification; this is accomplished by refusing to assign class labels to samples 'near' class boundaries. Classifier specific values are used to define these boundaries. Sample relabelling is based on robust reclassification and median average deviation, fuzzy logic and probabilistic learning. This thesis uses meteorological volumetric radar data to analyse the effectiveness of these concepts. It is determined that the number of independent components to consider should not be basedon a cumulative variance in principal components and that interquartile membership is mot effective with real variables; rejection classes pay a high price in terms of the number of unlabelled samples although they improve classifier performance; robust reclassification consistently improves classifier performance over a broad range of classifiers. Future validation of the number of event prototypes will confirm the application of robust reclassification to this problem.5404744 bytes184 bytesapplication/pdftext/plainenen_USPattern recognition techniques as applied to the classification of convective storm cellsElectrical and Computer EngineeringM.Sc.
collection NDLTD
language en
en_US
format Others
sources NDLTD
description This thesis investigates the role of preprocessing, rejection classes and ample relabelling in the classification of convective storm cells. This problem is representative of pattern recognition problems displaying high data dimensionality, small sample sets, and imperfect sample labelling. A battery of standard classifiers are compared using preprocessing strategies such as interquartile membership, principal and independent components. Rejection classes initiate the trade-off between improvement of performance and exhaustive classification; this is accomplished by refusing to assign class labels to samples 'near' class boundaries. Classifier specific values are used to define these boundaries. Sample relabelling is based on robust reclassification and median average deviation, fuzzy logic and probabilistic learning. This thesis uses meteorological volumetric radar data to analyse the effectiveness of these concepts. It is determined that the number of independent components to consider should not be basedon a cumulative variance in principal components and that interquartile membership is mot effective with real variables; rejection classes pay a high price in terms of the number of unlabelled samples although they improve classifier performance; robust reclassification consistently improves classifier performance over a broad range of classifiers. Future validation of the number of event prototypes will confirm the application of robust reclassification to this problem.
author Alexiuk, Mark Douglas
spellingShingle Alexiuk, Mark Douglas
Pattern recognition techniques as applied to the classification of convective storm cells
author_facet Alexiuk, Mark Douglas
author_sort Alexiuk, Mark Douglas
title Pattern recognition techniques as applied to the classification of convective storm cells
title_short Pattern recognition techniques as applied to the classification of convective storm cells
title_full Pattern recognition techniques as applied to the classification of convective storm cells
title_fullStr Pattern recognition techniques as applied to the classification of convective storm cells
title_full_unstemmed Pattern recognition techniques as applied to the classification of convective storm cells
title_sort pattern recognition techniques as applied to the classification of convective storm cells
publishDate 2007
url http://hdl.handle.net/1993/2245
work_keys_str_mv AT alexiukmarkdouglas patternrecognitiontechniquesasappliedtotheclassificationofconvectivestormcells
_version_ 1716574889454862336