Regulation of the high affinity receptor for IgE (FcepsilonRI) in human neutrophils

Polymorphonuclear neutrophils (PMNs) are important effector cells in host defense and the inflammatory response to antigen. The involvement of PMNs in inflammation is mainly mediated by the Fc receptor family, including IgE receptors. Recently, we have shown that human PMNs from allergic asthmatic s...

Full description

Bibliographic Details
Main Author: Alphonse, Martin Prince
Other Authors: Soussi-Gounni, Abdelilah (Immunology)
Format: Others
Language:en_US
Published: 2006
Subjects:
Online Access:http://hdl.handle.net/1993/108
Description
Summary:Polymorphonuclear neutrophils (PMNs) are important effector cells in host defense and the inflammatory response to antigen. The involvement of PMNs in inflammation is mainly mediated by the Fc receptor family, including IgE receptors. Recently, we have shown that human PMNs from allergic asthmatic subjects express the high affinity receptor, FceRI. In this study, we have examined the regulation of FceRI by human PMNs in vitro and in vivo during the allergic pollen season. First we studied the pattern of expression of FceRI in PMNs during the pollen allergic and outside the pollen season. Peripheral blood neutrophils were isolated from adult atopic asthmatics (AA) (n=17), allergic non asthmatics (ANA) (n=15) and healthy donors (n=16) by dextran, ficoll gradient centrifugation and magnetic cell sorting (MACS). Surface, total protein and mRNA expression of FceRI were investigated in the three groups by FACS, immunocytochemistry (ICC) and fluorescent in situ hybridization (FISH) respectively. Secondly, we investigated the effect of Th-2 cytokines which are known to regulate IgE receptor expression. PMNs from atopic asthmatic subjects were stimulated in vitro with Th-2 cytokines (IL-4, IL-9, GM-CSF) and Th-1 cytokine IFN-gamma. Finally we determined whether the expression of FceRIbeta chain correlated with the surface expression of FceRIalpha chain in PMNs. Irrespective of the season, PMNs from atopic asthmatic subjects showed increased expression of FceRIalpha chain in surface, total protein and mRNA compared to atopic non asthmatics and healthy donors (n=20). Interestingly, FceRIalpha chain surface and mRNA expression increased significantly during pollen season compared to non pollen season (P=0.001) in PMNs isolated from AA (n=9) in contrast to healthy donors and ANA (n=8). Furthermore similar pattern of FceRI expression were observed in vitro when PMNs were stimulated with Th2 cytokines. IL-4, IL-9 and GM-CSF showed increased protein and mRNA expression of FceRIalpha chain at 6 and 18hrs (n=6) whereas IFN-gamma down regulated the mRNA expression of FceRIalpha chain at 6hrs. Also, irrespective of season AA (n=11) subjects showed increased expression of FceRI beta chain when compared to ANA (n=10) and healthy donors (n=9). Western blot analysis showed increased FceRI beta protein in atopic asthmatic subjects (n=4). Interestingly irrespective of the groups, there was a positive correlation r = 0.8054 between total protein expression of beta chain with surface expression of alpha chain of FceRI in neutrophils. Our data suggest that the expression of FceRI in neutrophils of atopic asthmatic patients is highly regulated. Our in vitro studies provide evidence that Th-2 cytokines such as IL-9, IL-4 and GM-CSF up-regulate the expression of FceRI. Furthermore we show evidence of increased expression of FceRIbeta chain in neutrophils of atopic asthmatic subjects. Collectively these results suggest that FceRI mediated neutrophil dependent activation may play a key role in allergic diseases. === May 2005