Time-domain distortion analysis of wideband electromagnetic field sensors using orthogonal polynomial subspaces
In this thesis, a method of distortion analysis of electromagnetic field sensors using orthogonal polynomial subspaces is presented. The effective height of the sensor is viewed as the impulse response of a linear system. The impulse response corresponds to a linear transformation which maps every e...
Main Author: | |
---|---|
Other Authors: | |
Language: | en_US |
Published: |
2011
|
Subjects: | |
Online Access: | http://hdl.handle.net/1993/4454 |
Summary: | In this thesis, a method of distortion analysis of electromagnetic field sensors using orthogonal polynomial subspaces is presented. The effective height of the sensor is viewed as the impulse response of a linear system. The impulse response corresponds to a linear transformation which maps every electromagnetic incident field waveform to a received voltage waveform. Hermite and Laguerre orthogonal polynomials are used as the basis
sets for the subspace of incident electromagnetic field waveforms. Using the selected basis set, a transformation matrix is calculated for the sensors. The transformation matrices are compared to a reference transformation matrix as a measure of distortion. The transformation matrices can describe the sensor behavior up to a certain frequency
range. The limits on this frequency range are investigated for both Hermite-Gauss and Laguerre functions. The unique property of Laguerre functions is used to prove that the transformation matrix has a particular pattern. This method is applied on case studied sensors both in computer simulation and measurements. |
---|