Investigating nanomechanical properties of proteins that exhibit differing functionality using single molecule atomic force microscopy

Proteins are the workhorses of the biological world, performing a range of tasks that are critical to life. How proteins attain their functional three dimensional fold from a simple linear polymer chain is a poorly understood, yet fundamental process. Comprehending how proteins fold and the molecula...

Full description

Bibliographic Details
Main Author: Jollymore, Ashlee
Language:English
Published: University of British Columbia 2009
Online Access:http://hdl.handle.net/2429/7901
Description
Summary:Proteins are the workhorses of the biological world, performing a range of tasks that are critical to life. How proteins attain their functional three dimensional fold from a simple linear polymer chain is a poorly understood, yet fundamental process. Comprehending how proteins fold and the molecular arbiters of functional characteristics has the potential for the future rational engineering of proteins that exhibit desired utility and remains an active area of research today. The atomic force microscope (AFM) has been developed as a tool uniquely suited towards studying protein folding and functionality at the nanoscale, with its ability to definitively describe the mechanical properties of a single molecule of protein. This study seeks to apply the AFM towards elucidating the mechanical properties of two proteins with dissimilar functionality: the mechanical extracellular matrix protein tenascin-X and the non-mechanical enzyme bacillus circulans xylanase (BCX). By explicating the mechanical properties of each of these proteins, we seek to explore how intrinsic functionality is encoded within the molecular structure of a protein with intrinsic mechanical functionality as well as one lacking a mechanical physiological role. Using AFM to investigate these differences expands on what is already known concerning the mechanical properties of proteins exhibiting differing structure and functional character, seeking to further explicate the basis of mechanical properties observable using the AFM.