The behavior of the Hilbert scheme of points under the derived McKay correspondence
In this thesis, we completely determine the image of structure sheaves of zero-dimensional, torus invariant, closed subschemes on the minimal, crepant resolution Y of the Kleinian quotient singularity C²/Z/n under the Fourier-Mukai equivalence of categories, between derived category of coherent shea...
Main Author: | |
---|---|
Language: | English |
Published: |
University of British Columbia
2013
|
Online Access: | http://hdl.handle.net/2429/45044 |
Summary: | In this thesis, we completely determine the image of structure sheaves of zero-dimensional, torus invariant, closed subschemes on the minimal, crepant resolution Y of the Kleinian quotient singularity C²/Z/n under the Fourier-Mukai equivalence of categories, between derived category of coherent sheaves on Y and Z/n-equivariant derived category of coherent sheaves on C². As a consequence, we obtain a combinatorial correspondence between partitions and Z/n-colored skew partitions. |
---|