Summary: | This work presents an automatic creation of 3D models from single view design sketches. We observe that these sketches typically employ networks of trim curves and cross-sections to convey shape. Combined together these curves define the representative flow-lines of the model, reflecting principal curvature and feature lines across the target surface. Artists design these lines to serve as a visual proxy of the 3D object and to effectively convey all surface details. Cross-sections, in particular, are known to impose a set of geometric constraints on the imagined surface, that help position the surface in 3D. We formulate the problem of reconstructing believ-
able 3D curve geometry from design sketches via an optimization framework that leverages the geometric properties of flow-line networks, the constraints imposed by cross-section curves, and observations on how people perceive and sketch such networks. This algorithm utilizes these criteria to simultaneously construct the 3D curves
and correct for inevitable inaccuracies in free-hand sketches, which if retained would hinder constraint satisfaction and may lead to noticeable artifacts in the reconstructed 3D models. We validate our framework by producing believable 3D curve networks and surfaces from design sketches based on cross-section and trim curves, conducting a qualitative comparison to artist-estimated models, and visual validation by designers.
|