Osteoarthritic synovial fluid rheology and correlation with protein concentration

Synovial fluid (SF) is a lubricant for articulating joints. The study of SF rheological properties has gained significance due to SF viscoelastic properties, and SF’s ability to sustain a considerable load. The rheological performance of SF is linked to the joint’s condition. A joint disease such as...

Full description

Bibliographic Details
Main Author: Madkhali, Anwar Ali
Language:English
Published: University of British Columbia 2013
Online Access:http://hdl.handle.net/2429/43846
Description
Summary:Synovial fluid (SF) is a lubricant for articulating joints. The study of SF rheological properties has gained significance due to SF viscoelastic properties, and SF’s ability to sustain a considerable load. The rheological performance of SF is linked to the joint’s condition. A joint disease such as osteoarthritis (OA) reduces SF rheological properties. This study is aimed at investigating the shear and extensional rheological properties of osteoarthritic synovial fluid (OA SF). Additionally, this study is aimed at correlating SF rheological properties with its protein concentration. Shear rheological properties of 35 OA SF samples were investigated at a physiological temperature (37 °C) using cone-and-plate shear rheometer. Furthermore, the effects of the temperature, the centrifugation, and the storage at -20 °C for two weeks were also studied on some samples. Additionally, the time-dependent rheological properties were investigated by rotation and oscillation tests. Extensional rheological properties were studied using a capillary breakup extensional rheometer (CaBER). First, the effects of different CaBER configurations on the extensional rheological measurements were investigated in order to determine the optimal configuration. Then, the extensional rheological properties of 21 OA SF samples were studied. The protein concentrations of SF were determined using a bicinchoninic acid (BCA) protein assay kit. I also investigate the correlations between rheological properties and protein concentration. The understanding of SF rheological properties will lead to a better understanding of its lubrication properties, and to the development of a rheological analogue to SF or to a periprosthetic fluid.