Shear strength of Canadian softwood structural lumber

An experimental study has been conducted to evaluate the longitudinal shear strength of Canadian softwood structural lumber using a two span five point bending test procedure. Nominal 38mm x 185mm Douglas-Fir, nominal 38mm x 185mm and nominal 38mm x 285mm Hem-Fir and Spruce-Pine-Fir boards have b...

Full description

Bibliographic Details
Main Author: Yee, Hon Wing
Language:English
Published: 2009
Online Access:http://hdl.handle.net/2429/4209
id ndltd-LACETR-oai-collectionscanada.gc.ca-BVAU.2429-4209
record_format oai_dc
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-BVAU.2429-42092014-03-14T15:39:24Z Shear strength of Canadian softwood structural lumber Yee, Hon Wing An experimental study has been conducted to evaluate the longitudinal shear strength of Canadian softwood structural lumber using a two span five point bending test procedure. Nominal 38mm x 185mm Douglas-Fir, nominal 38mm x 185mm and nominal 38mm x 285mm Hem-Fir and Spruce-Pine-Fir boards have been considered. Flat-wise and edge-wise modulus of elasticity tests have been conducted for each specimens prior to the destructive shear tests. A two span five point bending test procedure has been chosen because of its ability to produce a relatively high percentage of longitudinal shear failures. Approximately 40% of the failures can be attributed to shear failures in the nominal 38 mm x 185 mm and 30% in the nominal 38 mm x 285 mm specimens. Two test configurations have been considered: test span to specimen depth ratios of 6:1 and 5:1. American Society for Testing and Materials (ASTM) shear block tests have also been conducted to evaluate the shear strength of small clear specimens. Based on the ASTM shear block test and the edge-wise modulus of elasticity results, a linear elastic finite element analysis coupled with Weibull weakest link theory has been used to predict the shear failure loads at different levels of failure probability. Good agreement between predicted and measured failure loads at different probability of failure levels for the different sizes and spans of each species have been observed. Predictions from the finite element and size effect analysis procedures have been compared to an empirical approach for predicting longitudinal shear resistance in sawn lumber and glued laminated beams proposed by the US Forest Products Laboratory. The US proposed design equation tends to overestimate the longitudinal shear resistance of the full size beam results obtained from this study. In lower grades of dimension lumber, shear failures do not govern because the bending to shear strength ratio is usually significantly lower as compared to the Select Structural grade material. Therefore in the lower quality dimension lumber, bending failure mode would most likely dominate. 2009-02-06T21:20:24Z 2009-02-06T21:20:24Z 1995 2009-02-06T21:20:24Z 1996-05 Electronic Thesis or Dissertation http://hdl.handle.net/2429/4209 eng UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]
collection NDLTD
language English
sources NDLTD
description An experimental study has been conducted to evaluate the longitudinal shear strength of Canadian softwood structural lumber using a two span five point bending test procedure. Nominal 38mm x 185mm Douglas-Fir, nominal 38mm x 185mm and nominal 38mm x 285mm Hem-Fir and Spruce-Pine-Fir boards have been considered. Flat-wise and edge-wise modulus of elasticity tests have been conducted for each specimens prior to the destructive shear tests. A two span five point bending test procedure has been chosen because of its ability to produce a relatively high percentage of longitudinal shear failures. Approximately 40% of the failures can be attributed to shear failures in the nominal 38 mm x 185 mm and 30% in the nominal 38 mm x 285 mm specimens. Two test configurations have been considered: test span to specimen depth ratios of 6:1 and 5:1. American Society for Testing and Materials (ASTM) shear block tests have also been conducted to evaluate the shear strength of small clear specimens. Based on the ASTM shear block test and the edge-wise modulus of elasticity results, a linear elastic finite element analysis coupled with Weibull weakest link theory has been used to predict the shear failure loads at different levels of failure probability. Good agreement between predicted and measured failure loads at different probability of failure levels for the different sizes and spans of each species have been observed. Predictions from the finite element and size effect analysis procedures have been compared to an empirical approach for predicting longitudinal shear resistance in sawn lumber and glued laminated beams proposed by the US Forest Products Laboratory. The US proposed design equation tends to overestimate the longitudinal shear resistance of the full size beam results obtained from this study. In lower grades of dimension lumber, shear failures do not govern because the bending to shear strength ratio is usually significantly lower as compared to the Select Structural grade material. Therefore in the lower quality dimension lumber, bending failure mode would most likely dominate.
author Yee, Hon Wing
spellingShingle Yee, Hon Wing
Shear strength of Canadian softwood structural lumber
author_facet Yee, Hon Wing
author_sort Yee, Hon Wing
title Shear strength of Canadian softwood structural lumber
title_short Shear strength of Canadian softwood structural lumber
title_full Shear strength of Canadian softwood structural lumber
title_fullStr Shear strength of Canadian softwood structural lumber
title_full_unstemmed Shear strength of Canadian softwood structural lumber
title_sort shear strength of canadian softwood structural lumber
publishDate 2009
url http://hdl.handle.net/2429/4209
work_keys_str_mv AT yeehonwing shearstrengthofcanadiansoftwoodstructurallumber
_version_ 1716650286535147520