Characterization of antioxidant and anti-inflammatory activities of Maillard reaction products derived from sugar-amino acid models

Maillard reaction products (MRPs) are produced when reducing sugars react with amino acids, peptides or proteins in heat-processed foods. The overall objective of this research was to isolate and identify MRPs that exhibit antioxidant and anti-inflammatory activities, from different sugar-amino acid...

Full description

Bibliographic Details
Main Author: Chen, Xiumin
Language:English
Published: University of British Columbia 2011
Online Access:http://hdl.handle.net/2429/31485
id ndltd-LACETR-oai-collectionscanada.gc.ca-BVAU.2429-31485
record_format oai_dc
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-BVAU.2429-314852014-03-26T03:37:48Z Characterization of antioxidant and anti-inflammatory activities of Maillard reaction products derived from sugar-amino acid models Chen, Xiumin Maillard reaction products (MRPs) are produced when reducing sugars react with amino acids, peptides or proteins in heat-processed foods. The overall objective of this research was to isolate and identify MRPs that exhibit antioxidant and anti-inflammatory activities, from different sugar-amino acid model systems comprised of fructose, glucose or ribose, each with glycine (Fru-Gly, Glu-Gly and Rib-Gly) or lysine (Fru-Lys, Glu-Lys and Rib-Lys), respectively. The development of peroxyl radical scavenging activity was found to be positively correlated (r = 0.893-0.905, P < 0.001) with MRPs derived from the intermediate-to-late stages of the reaction and influenced mostly by the type of sugar. The cytotoxicity, antioxidant and anti-inflammatory activities of MRPs were not attributed to the α-dicarbonyl compounds present in the heated mixtures. An in vitro intestinal inflammation model was established using Caco-2 cells stimulated with 8,000U/mL interferon γ (IFN-γ) and 0.1 μg/mL of phorbol myristate acetate (PMA), which induced nitric oxide (NO) through up-regulation of inducible nitric oxide synthase (iNOS) expression and increased interleukin 8 (IL-8) synthesis. The NO and IL-8 inhibitory capacity of MRPs were positively correlated (r = 0.886-0.943, P < 0.05) with intracellular oxidation inhibitory activity. MRPs derived from Glu-Lys heated for 60 min showed the highest inhibitory activity for NO, IL-8, and iNOS among these six model systems and the low molecular weight ultrafiltration fraction recovered from Glu-Lys (GL60FIV, molecular weight (MW) < 1kDa) was attributed to these activities. A fraction recovered from GL60FIV, termed F3, possessed the high NO, iNOS and IL-8 inhibitory activity and was further identified to contain three major sub-fractions (F3-A, F3-B and F3-C). The NO inhibitory capacity of F3-A (IC₅₀, 0.076 mmol/L) was higher (P < 0.05) than that of an iNOS inhibitor, aminoguanidine (IC₅₀, 0.16mmol/L). F3-A had a MW of 191Da and λmax= 370nm. F3-B and F3-C were identified as 5-hydroxymethyl-2-furfural and 5-hydroxymethyl-2-furoic acid, respectively. F3 down-regulated the expressions of genes that were involved in both the NF-κB signaling pathway and peroxidase activities. In conclusion, MRPs isolated from sugar-amino acid model systems can exhibit antioxidative and anti-inflammatory activities that may be useful to reduce intestinal inflammation. 2011-02-18T15:13:24Z 2011-02-18T15:13:24Z 2011 2011-02-18T15:13:24Z 2011-05 Electronic Thesis or Dissertation http://hdl.handle.net/2429/31485 eng University of British Columbia
collection NDLTD
language English
sources NDLTD
description Maillard reaction products (MRPs) are produced when reducing sugars react with amino acids, peptides or proteins in heat-processed foods. The overall objective of this research was to isolate and identify MRPs that exhibit antioxidant and anti-inflammatory activities, from different sugar-amino acid model systems comprised of fructose, glucose or ribose, each with glycine (Fru-Gly, Glu-Gly and Rib-Gly) or lysine (Fru-Lys, Glu-Lys and Rib-Lys), respectively. The development of peroxyl radical scavenging activity was found to be positively correlated (r = 0.893-0.905, P < 0.001) with MRPs derived from the intermediate-to-late stages of the reaction and influenced mostly by the type of sugar. The cytotoxicity, antioxidant and anti-inflammatory activities of MRPs were not attributed to the α-dicarbonyl compounds present in the heated mixtures. An in vitro intestinal inflammation model was established using Caco-2 cells stimulated with 8,000U/mL interferon γ (IFN-γ) and 0.1 μg/mL of phorbol myristate acetate (PMA), which induced nitric oxide (NO) through up-regulation of inducible nitric oxide synthase (iNOS) expression and increased interleukin 8 (IL-8) synthesis. The NO and IL-8 inhibitory capacity of MRPs were positively correlated (r = 0.886-0.943, P < 0.05) with intracellular oxidation inhibitory activity. MRPs derived from Glu-Lys heated for 60 min showed the highest inhibitory activity for NO, IL-8, and iNOS among these six model systems and the low molecular weight ultrafiltration fraction recovered from Glu-Lys (GL60FIV, molecular weight (MW) < 1kDa) was attributed to these activities. A fraction recovered from GL60FIV, termed F3, possessed the high NO, iNOS and IL-8 inhibitory activity and was further identified to contain three major sub-fractions (F3-A, F3-B and F3-C). The NO inhibitory capacity of F3-A (IC₅₀, 0.076 mmol/L) was higher (P < 0.05) than that of an iNOS inhibitor, aminoguanidine (IC₅₀, 0.16mmol/L). F3-A had a MW of 191Da and λmax= 370nm. F3-B and F3-C were identified as 5-hydroxymethyl-2-furfural and 5-hydroxymethyl-2-furoic acid, respectively. F3 down-regulated the expressions of genes that were involved in both the NF-κB signaling pathway and peroxidase activities. In conclusion, MRPs isolated from sugar-amino acid model systems can exhibit antioxidative and anti-inflammatory activities that may be useful to reduce intestinal inflammation.
author Chen, Xiumin
spellingShingle Chen, Xiumin
Characterization of antioxidant and anti-inflammatory activities of Maillard reaction products derived from sugar-amino acid models
author_facet Chen, Xiumin
author_sort Chen, Xiumin
title Characterization of antioxidant and anti-inflammatory activities of Maillard reaction products derived from sugar-amino acid models
title_short Characterization of antioxidant and anti-inflammatory activities of Maillard reaction products derived from sugar-amino acid models
title_full Characterization of antioxidant and anti-inflammatory activities of Maillard reaction products derived from sugar-amino acid models
title_fullStr Characterization of antioxidant and anti-inflammatory activities of Maillard reaction products derived from sugar-amino acid models
title_full_unstemmed Characterization of antioxidant and anti-inflammatory activities of Maillard reaction products derived from sugar-amino acid models
title_sort characterization of antioxidant and anti-inflammatory activities of maillard reaction products derived from sugar-amino acid models
publisher University of British Columbia
publishDate 2011
url http://hdl.handle.net/2429/31485
work_keys_str_mv AT chenxiumin characterizationofantioxidantandantiinflammatoryactivitiesofmaillardreactionproductsderivedfromsugaraminoacidmodels
_version_ 1716655857402380288