Robust feature selection for large scale image retrieval

This paper addresses the problem of recognizing specific objects in very large datasets. A common approach has been based on the bag-of-words (BOW) method, in which local image features are clustered into visual words, providing memory savings through feature quantization. In this paper we take an...

Full description

Bibliographic Details
Main Author: Turcot, Panu James
Language:English
Published: University of British Columbia 2010
Online Access:http://hdl.handle.net/2429/28474
id ndltd-LACETR-oai-collectionscanada.gc.ca-BVAU.2429-28474
record_format oai_dc
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-BVAU.2429-284742014-03-26T03:37:27Z Robust feature selection for large scale image retrieval Turcot, Panu James This paper addresses the problem of recognizing specific objects in very large datasets. A common approach has been based on the bag-of-words (BOW) method, in which local image features are clustered into visual words, providing memory savings through feature quantization. In this paper we take an additional step to reducing memory requirements by selecting only a small subset of the training features to use for recognition. This approach, which we name Robust Feature Selection (RFS), is based on the observation that many local features are unreliable or represent irrelevant clutter. We are able to select “maximally robust” features by an unsupervised preprocessing step that identifies correctly matching features among the training images. We demonstrate that this selection approach allows an average of 4% of the original features per image to provide matching performance that is as accurate as the full set in the Oxford Buildings dataset. In addition, we employ a graph to represent the matching relationships between images. Doing so enables us to effectively augment the feature set for each image by merging them with maximally robust features from neighbouring images. We demonstrate adjacent and 2-adjacent augmentation, both of which give a substantial boost in recognition performance. 2010-09-16T16:30:04Z 2010-09-16T16:30:04Z 2010 2010-09-16T16:30:04Z 2011-05 Electronic Thesis or Dissertation http://hdl.handle.net/2429/28474 eng University of British Columbia
collection NDLTD
language English
sources NDLTD
description This paper addresses the problem of recognizing specific objects in very large datasets. A common approach has been based on the bag-of-words (BOW) method, in which local image features are clustered into visual words, providing memory savings through feature quantization. In this paper we take an additional step to reducing memory requirements by selecting only a small subset of the training features to use for recognition. This approach, which we name Robust Feature Selection (RFS), is based on the observation that many local features are unreliable or represent irrelevant clutter. We are able to select “maximally robust” features by an unsupervised preprocessing step that identifies correctly matching features among the training images. We demonstrate that this selection approach allows an average of 4% of the original features per image to provide matching performance that is as accurate as the full set in the Oxford Buildings dataset. In addition, we employ a graph to represent the matching relationships between images. Doing so enables us to effectively augment the feature set for each image by merging them with maximally robust features from neighbouring images. We demonstrate adjacent and 2-adjacent augmentation, both of which give a substantial boost in recognition performance.
author Turcot, Panu James
spellingShingle Turcot, Panu James
Robust feature selection for large scale image retrieval
author_facet Turcot, Panu James
author_sort Turcot, Panu James
title Robust feature selection for large scale image retrieval
title_short Robust feature selection for large scale image retrieval
title_full Robust feature selection for large scale image retrieval
title_fullStr Robust feature selection for large scale image retrieval
title_full_unstemmed Robust feature selection for large scale image retrieval
title_sort robust feature selection for large scale image retrieval
publisher University of British Columbia
publishDate 2010
url http://hdl.handle.net/2429/28474
work_keys_str_mv AT turcotpanujames robustfeatureselectionforlargescaleimageretrieval
_version_ 1716655733286633472