Multiagent learning and empirical methods

Many algorithms exist for learning how to act in a repeated game and most have theoretical guarantees associated with their behaviour. However, there are few experimental results about the empirical performance of these algorithms, which is important for any practical application of this work. Mo...

Full description

Bibliographic Details
Main Author: Zawadzki, Erik P.
Language:English
Published: University of British Columbia 2008
Subjects:
MAL
Online Access:http://hdl.handle.net/2429/2480
Description
Summary:Many algorithms exist for learning how to act in a repeated game and most have theoretical guarantees associated with their behaviour. However, there are few experimental results about the empirical performance of these algorithms, which is important for any practical application of this work. Most of the empirical claims in the literature to date have been based on small experiments, and this has hampered the development of multiagent learning (MAL) algorithms with good performance properties. In order to rectify this problem, we have developed a suite of tools for running multiagent experiments called the Multiagent Learning Testbed (MALT). These tools are designed to facilitate running larger and more comprehensive experiments by removing the need to code one-off experimental apparatus. MALT also provides a number of public implementations of MAL algorithms—hopefully eliminating or reducing differences between algorithm implementations and increasing the reproducibility of results. Using this test-suite, we ran an experiment that is unprecedented in terms of the number of MAL algorithms used and the number of game instances generated. The results of this experiment were analyzed by using a variety of performance metrics—including reward, maxmin distance, regret, and several types of convergence. Our investigation also draws upon a number of empirical analysis methods. Through this analysis we found some surprising results: the most surprising observation was that a very simple algorithm—one that was intended for single-agent reinforcement problems and not multiagent learning— performed better empirically than more complicated and recent MAL algorithms.