Conditional source-term estimation methods for turbulent reacting flows

Conditional Source-term Estimation (CSE) methods are used to obtain chemical closure in turbulent combustion simulation. A Laminar Flamelet Decomposition (LFD) and then a Trajectory Generated Low-Dimensional Manifold (TGLDM) method are combined with CSE in Reynolds-Averaged Navier Stokes (RANS)...

Full description

Bibliographic Details
Main Author: Jin, Bei
Language:en
Published: University of British Columbia 2007
Subjects:
Online Access:http://hdl.handle.net/2429/232
Description
Summary:Conditional Source-term Estimation (CSE) methods are used to obtain chemical closure in turbulent combustion simulation. A Laminar Flamelet Decomposition (LFD) and then a Trajectory Generated Low-Dimensional Manifold (TGLDM) method are combined with CSE in Reynolds-Averaged Navier Stokes (RANS) simulation of non-premixed autoigniting jets. Despite the scatter observed in the experimental data, the predictions of ignition delay from both methods agree reasonably well with the measurements. The discrepancy between predictions of these two methods can be attributed to different ways of generating libraries that contain information of detailed chemical mechanism. The CSE-TGLDM method is recommended for its seemingly better performance and its ability to transition from autoignition to combustion. The effects of fuel composition and injection parameters on ignition delay are studied using the CSE-TGLDM method. The CSE-TGLDM method is then applied in Large Eddy Simulation of a non-premixed, piloted jet flame, Sandia Flame D. The adiabatic CSE-TGLDM method is extended to include radiation by introducing a variable enthalpy defect to parameterize TGLDM manifolds. The results are compared to the adiabatic computation and the experimental data. The prediction of NO formation is improved, though the predictions of temperature and major products show no significant difference from the adiabatic computation due to the weak radiation of the flame. The scalar fields are then extracted and used to predict the mean spectral radiation intensities of the flame. Finally, the application of CSE in turbulent premixed combustion is explored. A product-based progress variable is chosen for conditioning. Presumed Probability Density Function (PDF) models for the progress variable are studied. A modified version of a laminar flame-based PDF model is proposed, which best captures the distribution of the conditional variable among all PDFs under study. A priori tests are performed with the CSE and presumed PDF models. Reaction rates of turbulent premixed flames are closed and compared to the DNS data. The results are promising, suggesting that chemical closure can be achieved in premixed combustion using the CSE method.