Identification of echinus and characterization of its role in Drosophila eye development

The precise structure of the adult Drosophila eye results from a coordinated process of cell sorting, differentiation and selective cell death in the retinal epithelium. Mutations in the gene echinus cause supernumerary pigment cells due to insufficient cell death. This study reports the identific...

Full description

Bibliographic Details
Main Author: Bosdet, Ian Edward
Language:English
Published: University of British Columbia 2008
Subjects:
Online Access:http://hdl.handle.net/2429/1418
id ndltd-LACETR-oai-collectionscanada.gc.ca-BVAU.2429-1418
record_format oai_dc
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-BVAU.2429-14182014-03-26T03:35:20Z Identification of echinus and characterization of its role in Drosophila eye development Bosdet, Ian Edward Drosophila Echinus Cell adhesion Programmed cell death Retina development Adherens junction Cell sorting The precise structure of the adult Drosophila eye results from a coordinated process of cell sorting, differentiation and selective cell death in the retinal epithelium. Mutations in the gene echinus cause supernumerary pigment cells due to insufficient cell death. This study reports the identification of echinus and the characterization of its role in Drosophila retinal development. Using a combination of deletion mapping, gene expression analysis and genomic sequencing, echinus was cloned and several alleles were sequenced. echinus encodes a ~180kDa protein containing an ubiquitin hydrolase domain at its N-terminus and a polyglutamine tract at its C-terminus. echinus is expressed in the retina during pupal development and mutants of echinus have decreased levels of apoptosis during several stages of retinal development. Defects in the cell sorting process that precedes cell death are also observed in echinus loss-of-function mutants and echinus overexpression can cause defects in ommatidial rotation and the morphology of cone cells. echinus is a positive regulator of DE-cadherin and Enabled accumulation in adherens junctions of retinal epithelial cells. Genetic interactions were observed between echinus and the genes wingless, enabled and expanded. An immunofluorescence assay in Drosophila S2 cell cultured demonstrated that Echinus localizes to intracellular vesicles that do not appear to be endocytic in nature, and the C-terminal region of Echinus was shown to be necessary for this association. A protein interaction screen using an immunoprecipitation and mass spectrometry approach identified interactions between Echinus and the vesicle coat protein Clathrin, the scaffolding protein RACK1 and the casein kinase I epsilon (Dco). Co-immunoprecipitation additionally identified an interaction between Echinus and Enabled. This work has revealed echinus to be an important regulator of cell sorting and adherens junction formation in the developing retina and has identified multiple interactions between echinus and enabled, a regulator of the actin cytoskeleton. 2008-08-19T20:30:10Z 2008-08-19T20:30:10Z 2008 2008-08-19T20:30:10Z 2008-11 Electronic Thesis or Dissertation http://hdl.handle.net/2429/1418 eng University of British Columbia
collection NDLTD
language English
sources NDLTD
topic Drosophila
Echinus
Cell adhesion
Programmed cell death
Retina development
Adherens junction
Cell sorting
spellingShingle Drosophila
Echinus
Cell adhesion
Programmed cell death
Retina development
Adherens junction
Cell sorting
Bosdet, Ian Edward
Identification of echinus and characterization of its role in Drosophila eye development
description The precise structure of the adult Drosophila eye results from a coordinated process of cell sorting, differentiation and selective cell death in the retinal epithelium. Mutations in the gene echinus cause supernumerary pigment cells due to insufficient cell death. This study reports the identification of echinus and the characterization of its role in Drosophila retinal development. Using a combination of deletion mapping, gene expression analysis and genomic sequencing, echinus was cloned and several alleles were sequenced. echinus encodes a ~180kDa protein containing an ubiquitin hydrolase domain at its N-terminus and a polyglutamine tract at its C-terminus. echinus is expressed in the retina during pupal development and mutants of echinus have decreased levels of apoptosis during several stages of retinal development. Defects in the cell sorting process that precedes cell death are also observed in echinus loss-of-function mutants and echinus overexpression can cause defects in ommatidial rotation and the morphology of cone cells. echinus is a positive regulator of DE-cadherin and Enabled accumulation in adherens junctions of retinal epithelial cells. Genetic interactions were observed between echinus and the genes wingless, enabled and expanded. An immunofluorescence assay in Drosophila S2 cell cultured demonstrated that Echinus localizes to intracellular vesicles that do not appear to be endocytic in nature, and the C-terminal region of Echinus was shown to be necessary for this association. A protein interaction screen using an immunoprecipitation and mass spectrometry approach identified interactions between Echinus and the vesicle coat protein Clathrin, the scaffolding protein RACK1 and the casein kinase I epsilon (Dco). Co-immunoprecipitation additionally identified an interaction between Echinus and Enabled. This work has revealed echinus to be an important regulator of cell sorting and adherens junction formation in the developing retina and has identified multiple interactions between echinus and enabled, a regulator of the actin cytoskeleton.
author Bosdet, Ian Edward
author_facet Bosdet, Ian Edward
author_sort Bosdet, Ian Edward
title Identification of echinus and characterization of its role in Drosophila eye development
title_short Identification of echinus and characterization of its role in Drosophila eye development
title_full Identification of echinus and characterization of its role in Drosophila eye development
title_fullStr Identification of echinus and characterization of its role in Drosophila eye development
title_full_unstemmed Identification of echinus and characterization of its role in Drosophila eye development
title_sort identification of echinus and characterization of its role in drosophila eye development
publisher University of British Columbia
publishDate 2008
url http://hdl.handle.net/2429/1418
work_keys_str_mv AT bosdetianedward identificationofechinusandcharacterizationofitsroleindrosophilaeyedevelopment
_version_ 1716654756275945472