Transcription regulation of human gonadotropin-releasing hormone receptor gene expression

Human placental GnRHR cDNA isolated from human choriocarcinoma JEG-3 cells, immortalized human extravillous trophoblasts (IEVT) and primary culture of cytotrophoblasts was identical to the pituitary counterpart. In addition, placental GnRHR wasshown coupling to both the protein kinase C (PKC) and pr...

Full description

Bibliographic Details
Main Author: Cheng, Kwai Wa
Language:English
Published: 2009
Online Access:http://hdl.handle.net/2429/12897
id ndltd-LACETR-oai-collectionscanada.gc.ca-BVAU.2429-12897
record_format oai_dc
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-BVAU.2429-128972014-03-14T15:46:22Z Transcription regulation of human gonadotropin-releasing hormone receptor gene expression Cheng, Kwai Wa Human placental GnRHR cDNA isolated from human choriocarcinoma JEG-3 cells, immortalized human extravillous trophoblasts (IEVT) and primary culture of cytotrophoblasts was identical to the pituitary counterpart. In addition, placental GnRHR wasshown coupling to both the protein kinase C (PKC) and protein kinase A (PKA) signaling transduction pathways. Interestingly, homologous down-regulation of GnRHR mRNA level was not observed in placental cells as in pituitary cells, suggesting that a different regulatory mechanism may exist in controlling the expression of this gene in these two tissues. UsingJEG-3 and IEVT cells as models, an upstream promoter was shown to confer the placental cell-specific expression of hGnRHR gene both in vitro and in vivo. Four putative transcription factor binding sites, namely hGR-Oct-1, hGR-CRE, hGR-GATA and hGR-AP-1, were located and confirmed to be essential for the placental expression of this gene. Importantly, hGR-CRE and hGR-GATA motifs were subsequently found to be placenta specific. A differential regulation of human GnRHR promoter activity by progesterone (P) in the pituitary and placenta was observed. P treatment decreased the promoter activity at the level of pituitary. In contrast, P stimulated the expression of this gene in the placenta. A progesterone response element, namely hGR-PRE, mediated the P-action. Interestingly, human progesterone receptor (PR)-B exhibits a cell-dependent transcriptional activity, such that it functions as a transcription activator in the placenta but a transcription repressor in the pituitary. In contrast, human PR-A acts as a transcription repressor in both tissues. The increase in hGnRHR promoter activity after cAMP/PKA pathway activation by either pharmacological agents or by PACAP and hCG in the pituitary and placenta, respectively, implies that any hormones, which activate cAMP/PKA pathway, may increase the hGnRHR gene transcription. Two elements, namely hGR-AP/CRE-1 and -2, were subsequently demonstrated to be responsible for mediating this stimulatory effect. The comparison studies on the transcriptional regulation of hGnRHR gene by P and cAMP/PKA pathway at the level of the pituitary and placenta implicate that the regulation of hGnRHR gene transcription is constantly under fine-tuning by a complex regulatory mechanism through the availability of different transcription factors and the activation of multiple signal transduction pathways. 2009-09-18T23:48:16Z 2009-09-18T23:48:16Z 2000 2009-09-18T23:48:16Z 2000-11 Electronic Thesis or Dissertation http://hdl.handle.net/2429/12897 eng UBC Retrospective Theses Digitization Project [http://www.library.ubc.ca/archives/retro_theses/]
collection NDLTD
language English
sources NDLTD
description Human placental GnRHR cDNA isolated from human choriocarcinoma JEG-3 cells, immortalized human extravillous trophoblasts (IEVT) and primary culture of cytotrophoblasts was identical to the pituitary counterpart. In addition, placental GnRHR wasshown coupling to both the protein kinase C (PKC) and protein kinase A (PKA) signaling transduction pathways. Interestingly, homologous down-regulation of GnRHR mRNA level was not observed in placental cells as in pituitary cells, suggesting that a different regulatory mechanism may exist in controlling the expression of this gene in these two tissues. UsingJEG-3 and IEVT cells as models, an upstream promoter was shown to confer the placental cell-specific expression of hGnRHR gene both in vitro and in vivo. Four putative transcription factor binding sites, namely hGR-Oct-1, hGR-CRE, hGR-GATA and hGR-AP-1, were located and confirmed to be essential for the placental expression of this gene. Importantly, hGR-CRE and hGR-GATA motifs were subsequently found to be placenta specific. A differential regulation of human GnRHR promoter activity by progesterone (P) in the pituitary and placenta was observed. P treatment decreased the promoter activity at the level of pituitary. In contrast, P stimulated the expression of this gene in the placenta. A progesterone response element, namely hGR-PRE, mediated the P-action. Interestingly, human progesterone receptor (PR)-B exhibits a cell-dependent transcriptional activity, such that it functions as a transcription activator in the placenta but a transcription repressor in the pituitary. In contrast, human PR-A acts as a transcription repressor in both tissues. The increase in hGnRHR promoter activity after cAMP/PKA pathway activation by either pharmacological agents or by PACAP and hCG in the pituitary and placenta, respectively, implies that any hormones, which activate cAMP/PKA pathway, may increase the hGnRHR gene transcription. Two elements, namely hGR-AP/CRE-1 and -2, were subsequently demonstrated to be responsible for mediating this stimulatory effect. The comparison studies on the transcriptional regulation of hGnRHR gene by P and cAMP/PKA pathway at the level of the pituitary and placenta implicate that the regulation of hGnRHR gene transcription is constantly under fine-tuning by a complex regulatory mechanism through the availability of different transcription factors and the activation of multiple signal transduction pathways.
author Cheng, Kwai Wa
spellingShingle Cheng, Kwai Wa
Transcription regulation of human gonadotropin-releasing hormone receptor gene expression
author_facet Cheng, Kwai Wa
author_sort Cheng, Kwai Wa
title Transcription regulation of human gonadotropin-releasing hormone receptor gene expression
title_short Transcription regulation of human gonadotropin-releasing hormone receptor gene expression
title_full Transcription regulation of human gonadotropin-releasing hormone receptor gene expression
title_fullStr Transcription regulation of human gonadotropin-releasing hormone receptor gene expression
title_full_unstemmed Transcription regulation of human gonadotropin-releasing hormone receptor gene expression
title_sort transcription regulation of human gonadotropin-releasing hormone receptor gene expression
publishDate 2009
url http://hdl.handle.net/2429/12897
work_keys_str_mv AT chengkwaiwa transcriptionregulationofhumangonadotropinreleasinghormonereceptorgeneexpression
_version_ 1716652607875842048