Identification and characterization of regulatory genes associated with secondary wall formation in Populus and Arabidopsis thaliana

Transcript profiling has the potential to reveal transcriptional networks operating during development and provides expression data for genes of unknown function. Based on previous studies employing global transcription profiling of Arabidopsis thaliana inflorescence stem development and A. thaliana...

Full description

Bibliographic Details
Main Author: Li, Eryang
Format: Others
Language:English
Published: University of British Columbia 2009
Online Access:http://hdl.handle.net/2429/7102
id ndltd-LACETR-oai-collectionscanada.gc.ca-BVAU.-7102
record_format oai_dc
spelling ndltd-LACETR-oai-collectionscanada.gc.ca-BVAU.-71022013-06-05T04:17:19ZIdentification and characterization of regulatory genes associated with secondary wall formation in Populus and Arabidopsis thalianaLi, EryangTranscript profiling has the potential to reveal transcriptional networks operating during development and provides expression data for genes of unknown function. Based on previous studies employing global transcription profiling of Arabidopsis thaliana inflorescence stem development and A. thaliana root cell type-specific expression, ten candidate transcription factor (TF) genes potentially associated with secondary wall formation and lignification were identified. Similar transcript profiling experiments had revealed gene expression patterns associated with secondary wall formation during secondary xylem formation in Populus species. I verified gene expression patterns of the poplar putative orthologs of the A. thaliana candidates, and the combination of the A. thaliana and poplar data identified a subset of conserved MYB and homeodomain TFs that behaved similarly in both plants. I analyzed the expression patterns of promoter-GUS fusions of all candidate genes in A. thaliana, most of which showed expression in xylem and cortex cells adjacent to interfascicular fibers in the stem, and in the root stele. T-DNA insertion mutants for most candidate genes were characterized, but only homeodomain transcription factor KNAT7 (At1g62990) T-DNA insertion mutants exhibited an obvious phenotype in inflorescence stems. The knat7 phenotype is characterized by irregular xylem (irx), interfascicular fibers with thicker cell walls, and defects in secreted seed mucilage. I also assayed for changes in gene expression in the knat7 background, and the results suggested that KNAT7 directly or indirectly regulates lignin biosynthesis genes. KNAT7 is known to interact with members of the Ovate Family Protein (OFP) transcription co-regulators. I confirmed the KNAT7-OFP1 and KNAT7-OFP4 interactions in planta, and showed that the interaction enhances KNAT7 transcriptional repression activity. Furthermore, an ofp4 mutant exhibits similar phenotypes as knat7, and the pleiotropic effect of OFP1 and OFP4 overexpression depends upon KNAT7 function. A knat7/ofp4 double mutant showed a very similar phenotype to the single mutants, supporting the hypothesis that the two proteins work in the same pathway. KNAT7 thus appears to form a functional complex with OFP proteins, and may directly or indirectly regulate lignin biosynthesis through interaction with OFP family members. These investigations provide new insights into the regulatory network(s) governing secondary wall biosynthesis in A. thaliana and poplar.University of British Columbia2009-04-15T16:41:55Z2009-04-15T16:41:55Z20092009-04-15T16:41:55Z2009-05Electronic Thesis or Dissertation7467046 bytesapplication/pdfhttp://hdl.handle.net/2429/7102eng
collection NDLTD
language English
format Others
sources NDLTD
description Transcript profiling has the potential to reveal transcriptional networks operating during development and provides expression data for genes of unknown function. Based on previous studies employing global transcription profiling of Arabidopsis thaliana inflorescence stem development and A. thaliana root cell type-specific expression, ten candidate transcription factor (TF) genes potentially associated with secondary wall formation and lignification were identified. Similar transcript profiling experiments had revealed gene expression patterns associated with secondary wall formation during secondary xylem formation in Populus species. I verified gene expression patterns of the poplar putative orthologs of the A. thaliana candidates, and the combination of the A. thaliana and poplar data identified a subset of conserved MYB and homeodomain TFs that behaved similarly in both plants. I analyzed the expression patterns of promoter-GUS fusions of all candidate genes in A. thaliana, most of which showed expression in xylem and cortex cells adjacent to interfascicular fibers in the stem, and in the root stele. T-DNA insertion mutants for most candidate genes were characterized, but only homeodomain transcription factor KNAT7 (At1g62990) T-DNA insertion mutants exhibited an obvious phenotype in inflorescence stems. The knat7 phenotype is characterized by irregular xylem (irx), interfascicular fibers with thicker cell walls, and defects in secreted seed mucilage. I also assayed for changes in gene expression in the knat7 background, and the results suggested that KNAT7 directly or indirectly regulates lignin biosynthesis genes. KNAT7 is known to interact with members of the Ovate Family Protein (OFP) transcription co-regulators. I confirmed the KNAT7-OFP1 and KNAT7-OFP4 interactions in planta, and showed that the interaction enhances KNAT7 transcriptional repression activity. Furthermore, an ofp4 mutant exhibits similar phenotypes as knat7, and the pleiotropic effect of OFP1 and OFP4 overexpression depends upon KNAT7 function. A knat7/ofp4 double mutant showed a very similar phenotype to the single mutants, supporting the hypothesis that the two proteins work in the same pathway. KNAT7 thus appears to form a functional complex with OFP proteins, and may directly or indirectly regulate lignin biosynthesis through interaction with OFP family members. These investigations provide new insights into the regulatory network(s) governing secondary wall biosynthesis in A. thaliana and poplar.
author Li, Eryang
spellingShingle Li, Eryang
Identification and characterization of regulatory genes associated with secondary wall formation in Populus and Arabidopsis thaliana
author_facet Li, Eryang
author_sort Li, Eryang
title Identification and characterization of regulatory genes associated with secondary wall formation in Populus and Arabidopsis thaliana
title_short Identification and characterization of regulatory genes associated with secondary wall formation in Populus and Arabidopsis thaliana
title_full Identification and characterization of regulatory genes associated with secondary wall formation in Populus and Arabidopsis thaliana
title_fullStr Identification and characterization of regulatory genes associated with secondary wall formation in Populus and Arabidopsis thaliana
title_full_unstemmed Identification and characterization of regulatory genes associated with secondary wall formation in Populus and Arabidopsis thaliana
title_sort identification and characterization of regulatory genes associated with secondary wall formation in populus and arabidopsis thaliana
publisher University of British Columbia
publishDate 2009
url http://hdl.handle.net/2429/7102
work_keys_str_mv AT lieryang identificationandcharacterizationofregulatorygenesassociatedwithsecondarywallformationinpopulusandarabidopsisthaliana
_version_ 1716587365469782016