On the number of prime solutions to a system of quadratic equations

Consider the system of quadratic diophantine equations bX² − aY² = 0 bX • Y − eY² = 0 constrained to the prime numbers contained in the box [0,N]²ⁿ. The Hardy- Littlewood circle method is applied to show that, under some local conditions on a, b, and e, the number of prime solutions contained in the...

Full description

Bibliographic Details
Main Author: Fraser, Robert
Language:English
Published: University of British Columbia 2013
Online Access:http://hdl.handle.net/2429/44283
Description
Summary:Consider the system of quadratic diophantine equations bX² − aY² = 0 bX • Y − eY² = 0 constrained to the prime numbers contained in the box [0,N]²ⁿ. The Hardy- Littlewood circle method is applied to show that, under some local conditions on a, b, and e, the number of prime solutions contained in the box is asymptotic to a constant times N²ⁿ⁻⁴/ (logN)²ⁿ , where the constant depends on a, b, and e.