Summary: | Recently, models of spacetime with extra dimensions has driven interest into higher dimensional black holes. In this thesis, we examine general relativity in spacetimes that are not four dimensional. The thesis is divided into three parts. The first part focuses on the higher dimensional Kerr-de Sitter metrics; we examine the separation of variables for the Hamilton-Jacobi and Klein-Gordon equations that occurs for particles and fields in those metrics. In the second part we consider lower dimensional geons, and give a proof that there cannot be any asymptotically flat geons in a three dimensional spacetime. Finally, we examine charged higher dimensional black holes, and consider the possibility of a higher dimensional generalization of the Kerr-Newman metric. We examine some approaches to find that solution, and demonstrate the form that the electromagnetic potential must have in such a spacetime.
|