Transcriptome analysis of conifer defense against bark beetle-associated blue-stain fungi and white pine weevil

Conifer forests are exposed to a large number of herbivorous insect species and pathogenic fungi, some of which cause extensive epidemics and substantial losses of forest resources. Bark beetles and white pine weevil represent major threats to conifer forest health. Bark beetles vector fungal pathog...

Full description

Bibliographic Details
Main Author: Kolosova, Natalia
Language:English
Published: University of British Columbia 2010
Online Access:http://hdl.handle.net/2429/29775
Description
Summary:Conifer forests are exposed to a large number of herbivorous insect species and pathogenic fungi, some of which cause extensive epidemics and substantial losses of forest resources. Bark beetles and white pine weevil represent major threats to conifer forest health. Bark beetles vector fungal pathogens, which are involved in killing of the host trees. Conifers employ a variety of defense strategies, including anatomical, chemical and molecular defense mechanisms. Recent development of conifer genomic resources and tools including large EST databases and microarrays have allowed for large-scale analysis of conifer defense. To evaluate transcriptome response of conifer species to fungal pathogens I performed a comparative analysis of the interior spruce (Picea glauca x engelmannii) response to spruce beetle-associated pathogenic blue-stain fungus Leptographium abietinum and the lodgepole pine (Pinus contorta) response to mountain pine beetle-associated pathogenic blue-stain fungus Grosmannia clavigera using a 21,843-clone cDNA spruce microarray platform. In addition, I performed a direct comparison of the interior spruce response to inoculation with the fungus Leptographium abietinum with the response to white pine weevil (Pissodes strobi) herbivory. The microarray analyses revealed substantial changes in the transcriptomes of conifer hosts in response to fungal inoculation or insect feeding with more than a thousand genes significantly differentially expressed in each system and interaction studied. The fungus-induced transcriptomes of spruce and pine shared a large number of similarly responding transcripts with some differences in the dynamics of the induced responses. The transcriptome responses of spruce induced by fungal inoculation and weevil feeding had a large overlap and some treatment-specific trends. Among the most strongly up-regulated transcripts in all interactions were phenylpropanoid pathway transcripts, dirigent protein transcripts, laccases, chitinases and transcripts of the terpenoid pathway. Gene specific expression analysis of selected transcripts confirmed and extended the microarray analysis. Cloning and functional characterization of selected chitinases revealed the presence of chitinolytic activity in two interior spruce and one lodgepole pine class I chitinases. Chitinolytic activity in addition to the strong induction of these chitinases in response to different treatments supported their involvement in conifer defense.