Regularization of the AVO inverse problem by means of a multivariate Cauchy probability distribution
Amplitude Variation with Oset (AVO) inversion is one of the techniques that is being used to estimate subsurface physical parameters such as P-wave velocity, S-wave velocity, and density or their attributes. AVO inversion is an ill-conditioned problem which has to be regularized in order to obtain a...
Main Author: | |
---|---|
Other Authors: | |
Format: | Others |
Language: | en |
Published: |
2010
|
Subjects: | |
Online Access: | http://hdl.handle.net/10048/914 |
Summary: | Amplitude Variation with Oset (AVO) inversion is one of the techniques that is being used to estimate subsurface physical parameters such as P-wave velocity, S-wave velocity, and density or their attributes. AVO inversion is an ill-conditioned problem which has to be regularized in order to obtain a stable and unique solution. In this thesis, a Bayesian procedure that uses a Multivariate Cauchy distribution as a prior probability distribution is introduced. The prior includes a scale matrix that imposes correlation among the AVO attributes and induces a regularization that provokes solutions that are sparse and stable in the presence of noise. The performance of this regularization is demonstrated by both synthetic and real data examples using linearized approximations to the Zoeppritz equations. === Geophysics |
---|