Summary: | Parametrinė fluorescencija (PF) – nekoherentinė šviesos sklaida – yra vienas pagrindinių susietųjų fotonų šaltinių taikomų kvantinės optikos eksperimentuose. Nuo pat pirmųjų PF eksperimentinių tyrimų 1968 metais įsigalėjo tradicija šį reiškinį žadinti išimtinai lazerine spinduliuote. Šios disertacijos tikslas – eksperimentiškai ištirti galimybę generuoti PF tiek laikiškai, tiek ir erdviškai nekoherentine spinduliuote – didelės galios šviesos diodu. Atliekant tyrimus didelio jautrio CCD kamera buvo registruojami silpni PF signalai, pavienių fotonų skaitliukais buvo registruojami fotonų sutapimai,. Lygiagrečiai eksperimentiniams tyrimams buvo atliekami teoriniai skaičiavimai. Šiuo tikslu buvo parašytas matematinio modeliavimo programinis kodas, skirtas įvertinti PF erdvinį galios pasiskirstymą bei modeliuoti fotonų sutapimų eksperimentą, keičiant kaupinimo pluošto ir detekcijos sistemos savybes. Šio darbo rezultatai atskleidžia, kad nekoherentiniai šaltiniai gali būti puiki alternatyva lazerinėms sistemoms siekiant žadinti vidutinės kokybės dvyninius laukus, ypatingai tokiose tyrimų srityse, kuriose mažas dvyninio lauko koherentiškumas būtų didžiulis privalumas. Pagrindiniai nekoherentinių šaltinių pranašumai prieš lazerines sistemas: maža kaina, paprasta gamybos technologija ir didžiulė komercinė skirtingo bangos ilgio šaltinių įvairovė. === Spontaneous parametric down conversion (SPDC) – incoherent light scattering – is one of the main entangled photons source applied in quantum optics experiments. The tradition to pump SPDC by laser radiation was established from the very first SPDC experiments in 1968. The aim of this thesis was experimentally to investigate the ability to generate an SPDC pumping by both temporal and spatially incoherent radiation - a high-power blue LED. Weak SPDC signals were registered with high sensitivity CCD cameras, photons coincidences were detected with photon counters. The theoretical simulations were performed in parallel with experiments. Therefore, mathematical simulation code was written in order to estimate the SPDC power distribution and simulate photon coincidence experiment changing the properties of pump beam and detection system. Experimental results reveal that incoherent light sources can be good alternative for the laser systems in order to generate average quality biphoton fields especially in those experiments in which low biphoton field coherency would be advantage. The main advantages of the incoherent sources over laser systems are low cost, simple production technology and the huge commercial variety of different wavelength sources.
|