Santrauka

Reziumė Disertacijoje nagrinėjamos atsitiktinių keitinių problemos yra priskirtinos tikimybinei kombinatorikai. Gauti rezultatai aprašo visiškai adityviųjų funkcijų, apibrėžtų simetrinėje grupėje, reikšmių asimptotinius skirstinius Evenso tikimybinio mato atžvilgiu, kai grupės eilė neaprėžtai didėja...

Full description

Bibliographic Details
Main Author: Bakšajeva, Tatjana
Other Authors: STEPANAUSKAS, GEDIMINAS
Format: Doctoral Thesis
Language:Lithuanian
Published: Lithuanian Academic Libraries Network (LABT) 2013
Subjects:
Online Access:http://vddb.laba.lt/fedora/get/LT-eLABa-0001:E.02~2013~D_20130604_083059-73406/DS.005.0.01.ETD
id ndltd-LABT_ETD-oai-elaba.lt-LT-eLABa-0001-E.02~2013~D_20130604_083059-73406
record_format oai_dc
spelling ndltd-LABT_ETD-oai-elaba.lt-LT-eLABa-0001-E.02~2013~D_20130604_083059-734062014-01-16T03:40:30Z2013-06-04litMathematicsBakšajeva, TatjanaSantraukaSummaryLithuanian Academic Libraries Network (LABT)Reziumė Disertacijoje nagrinėjamos atsitiktinių keitinių problemos yra priskirtinos tikimybinei kombinatorikai. Gauti rezultatai aprašo visiškai adityviųjų funkcijų, apibrėžtų simetrinėje grupėje, reikšmių asimptotinius skirstinius Evenso tikimybinio mato atžvilgiu, kai grupės eilė neaprėžtai didėja. Išvestos adityviųjų funkcijų laipsninių ir faktorialinių momentų formulės. Funkcijų, išreiškiančių atsitiktinio keitinio ciklų su bet kokiais apribojimais skaičius, atveju rastos būtinos ir pakankamos ribinių tikimybinių dėsnių egzistavimo sąlygos. Išsamiai išnagrinėtas konvergavimas į Puasono, quasi-Puasono, Bernulio, binominio ir kitus skirstinius, sukoncentruotus sveikųjų neneigiamų skaičių aibėje. Rezultatai apibendrinti sveikareikšmių visiškai adityviųjų funkcijų klasėje. Darbe įrodytas bendras silpnasis didžiųjų skaičių dėsnis, rastos būtinos ir pakankamos adityviųjų funkcijų sekų pasiskirstymo funkcijų konvergavimo į išsigimusį nuliniame taške dėsnį egzistavimo sąlygos. Sprendžiamos problemos yra susietos su tikimybiniais vektorių, turinčių sveikąsias neneigiamas koordinates, uždaviniais. Adicinėje tokių vektorių pusgrupėje išnagrinėti multiplikatyviųjų funkcijų vidurkiai tikimybinio mato, vadinamo Evanso atrankos formule, atžvilgiu. Gauti tikslūs viršutinieji ir apatinieji įverčiai. Iš jų išplaukia svarbios atsitiktinių keitinių tikimybių savybės. Disertacijoje plėtojami faktorialinių momentų ir kiti kombinatoriniai bei tikimybiniai metodai.In the thesis the examining problems of random permutations are attributed to the probabilistic combinatorics. Obtained results describe asymptotical distributions of completely additive functions values defined on a symmetric group with respect to Ewens probability measure, if the group order unbounded increases. Power and factorial moments formulae of additive functions are derived. There are established necessary and sufficient conditions under which the distributions of a number of cycles with restricted lengths obey the limit probability laws. The convergence to the Poisson, quasi-Poisson, Bernoulli, binomial and other distributions, defined on the positive whole - number set are exhaustively investigated. The results are generalized on the class of whole - number completely additive functions. The general weak law of large numbers is proved in the thesis, necessary and sufficient existence conditions, under which the distributions of the sequences of additive functions converge to the degenerate at the point zero limit law are established. Examining problems are related to the probability tasks of the vectors, which have whole - numbered nonnegative coordinates. The mean values of multiplicative functions defined on those vectors’ additive semigroup with respect to the Ewens measure, called Ewens Sampling Formula, and investigated. Lower and upper sharp estimates are obtained. From the latter results follow important probabilities’ properties of random... [to full text]PasiskirstymasEvenso tikimybinis matasFaktorialinis momentasDidžiųjų skaičių dėsnisCiklasDistributionSymmetric groupEwens Sampling FormulaWeak law of large numbersCycleDoctoral thesisSTEPANAUSKAS, GEDIMINASKUBILIUS, KĘSTUTISKAČINSKAITĖ, ROMAKRYLOVAS, ALEKSANDRASZACHAROVAS, VYTASŠIAULYS, JONASNORKŪNIENĖ, JOLITAManstavičius, EugenijusVilnius UniversityVilnius Universityhttp://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2013~D_20130604_083059-73406LT-eLABa-0001:E.02~2013~D_20130604_083059-73406VU-omaarfxosgk-20130228-205824http://vddb.laba.lt/fedora/get/LT-eLABa-0001:E.02~2013~D_20130604_083059-73406/DS.005.0.01.ETDUnrestrictedapplication/pdf
collection NDLTD
language Lithuanian
format Doctoral Thesis
sources NDLTD
topic Mathematics
Pasiskirstymas
Evenso tikimybinis matas
Faktorialinis momentas
Didžiųjų skaičių dėsnis
Ciklas
Distribution
Symmetric group
Ewens Sampling Formula
Weak law of large numbers
Cycle
spellingShingle Mathematics
Pasiskirstymas
Evenso tikimybinis matas
Faktorialinis momentas
Didžiųjų skaičių dėsnis
Ciklas
Distribution
Symmetric group
Ewens Sampling Formula
Weak law of large numbers
Cycle
Bakšajeva, Tatjana
Santrauka
description Reziumė Disertacijoje nagrinėjamos atsitiktinių keitinių problemos yra priskirtinos tikimybinei kombinatorikai. Gauti rezultatai aprašo visiškai adityviųjų funkcijų, apibrėžtų simetrinėje grupėje, reikšmių asimptotinius skirstinius Evenso tikimybinio mato atžvilgiu, kai grupės eilė neaprėžtai didėja. Išvestos adityviųjų funkcijų laipsninių ir faktorialinių momentų formulės. Funkcijų, išreiškiančių atsitiktinio keitinio ciklų su bet kokiais apribojimais skaičius, atveju rastos būtinos ir pakankamos ribinių tikimybinių dėsnių egzistavimo sąlygos. Išsamiai išnagrinėtas konvergavimas į Puasono, quasi-Puasono, Bernulio, binominio ir kitus skirstinius, sukoncentruotus sveikųjų neneigiamų skaičių aibėje. Rezultatai apibendrinti sveikareikšmių visiškai adityviųjų funkcijų klasėje. Darbe įrodytas bendras silpnasis didžiųjų skaičių dėsnis, rastos būtinos ir pakankamos adityviųjų funkcijų sekų pasiskirstymo funkcijų konvergavimo į išsigimusį nuliniame taške dėsnį egzistavimo sąlygos. Sprendžiamos problemos yra susietos su tikimybiniais vektorių, turinčių sveikąsias neneigiamas koordinates, uždaviniais. Adicinėje tokių vektorių pusgrupėje išnagrinėti multiplikatyviųjų funkcijų vidurkiai tikimybinio mato, vadinamo Evanso atrankos formule, atžvilgiu. Gauti tikslūs viršutinieji ir apatinieji įverčiai. Iš jų išplaukia svarbios atsitiktinių keitinių tikimybių savybės. Disertacijoje plėtojami faktorialinių momentų ir kiti kombinatoriniai bei tikimybiniai metodai. === In the thesis the examining problems of random permutations are attributed to the probabilistic combinatorics. Obtained results describe asymptotical distributions of completely additive functions values defined on a symmetric group with respect to Ewens probability measure, if the group order unbounded increases. Power and factorial moments formulae of additive functions are derived. There are established necessary and sufficient conditions under which the distributions of a number of cycles with restricted lengths obey the limit probability laws. The convergence to the Poisson, quasi-Poisson, Bernoulli, binomial and other distributions, defined on the positive whole - number set are exhaustively investigated. The results are generalized on the class of whole - number completely additive functions. The general weak law of large numbers is proved in the thesis, necessary and sufficient existence conditions, under which the distributions of the sequences of additive functions converge to the degenerate at the point zero limit law are established. Examining problems are related to the probability tasks of the vectors, which have whole - numbered nonnegative coordinates. The mean values of multiplicative functions defined on those vectors’ additive semigroup with respect to the Ewens measure, called Ewens Sampling Formula, and investigated. Lower and upper sharp estimates are obtained. From the latter results follow important probabilities’ properties of random... [to full text]
author2 STEPANAUSKAS, GEDIMINAS
author_facet STEPANAUSKAS, GEDIMINAS
Bakšajeva, Tatjana
author Bakšajeva, Tatjana
author_sort Bakšajeva, Tatjana
title Santrauka
title_short Santrauka
title_full Santrauka
title_fullStr Santrauka
title_full_unstemmed Santrauka
title_sort santrauka
publisher Lithuanian Academic Libraries Network (LABT)
publishDate 2013
url http://vddb.laba.lt/fedora/get/LT-eLABa-0001:E.02~2013~D_20130604_083059-73406/DS.005.0.01.ETD
work_keys_str_mv AT baksajevatatjana santrauka
AT baksajevatatjana summary
_version_ 1716624733643997184