Bankroto tikimybė ir Gerber-Shiu funkcija diskretaus laiko rizikos modeliui su skirtingai pasiskirsčiusiomis žalomis

Disertaciniame darbe nagrinėjamas diskretaus laiko rizikos modelis su skirtingai pasiskirsčiusiomis žalomis. Šis modelis aprašo draudimo įmonės turtą įtakojančius veiksnius: pradinį kapitalą, gaunamas įmokas, išmokamas žalas. Išvedamos rekursinės formulės, kurių pagalba galima tiksliai ir greitai ra...

Full description

Bibliographic Details
Main Author: Bieliauskienė, Eugenija
Other Authors: Paulauskas, Vygantas
Format: Doctoral Thesis
Language:Lithuanian
Published: Lithuanian Academic Libraries Network (LABT) 2012
Subjects:
Online Access:http://vddb.laba.lt/fedora/get/LT-eLABa-0001:E.02~2012~D_20120629_152603-71070/DS.005.0.01.ETD
id ndltd-LABT_ETD-oai-elaba.lt-LT-eLABa-0001-E.02~2012~D_20120629_152603-71070
record_format oai_dc
spelling ndltd-LABT_ETD-oai-elaba.lt-LT-eLABa-0001-E.02~2012~D_20120629_152603-710702014-01-17T03:47:39Z2012-06-29litMathematicsBieliauskienė, EugenijaBankroto tikimybė ir Gerber-Shiu funkcija diskretaus laiko rizikos modeliui su skirtingai pasiskirsčiusiomis žalomisRuin probability and Gerber-Shiu function for the discrete time risk model with inhomogeneous claimsLithuanian Academic Libraries Network (LABT)Disertaciniame darbe nagrinėjamas diskretaus laiko rizikos modelis su skirtingai pasiskirsčiusiomis žalomis. Šis modelis aprašo draudimo įmonės turtą įtakojančius veiksnius: pradinį kapitalą, gaunamas įmokas, išmokamas žalas. Išvedamos rekursinės formulės, kurių pagalba galima tiksliai ir greitai rasti baigtinio laiko bankroto tikimybių ir Gerber-Shiu funkcijos vertes. Rekursinės formulės taip pat pateikiamos ir begalinio laiko rizikos matams, tačiau nevienodai pasiskirsčiusių žalų atveju iškyla papildomų sunkumų randant bankroto tikimybę ir Gerber-Shiu funkciją, kai pradinis kapitalas lygus 0. Tam įrodoma atskira teorema, tačiau nedarant jokių prielaidų apie žalų pasiskirstymus, apskaičiuoti vertes lengva tikrai nėra. Kaip išeitis pasiūloma cikliškai pasiskirsčiusių žalų struktūra ir pateikiami algoritmai, leidžiantys teoremas pritaikyti praktiškai. Demonstruojant teoremų ir rekursinių formulių veikimą, pateikiami skaitiniai pavyzdžiai su grafinėmis iliustracijomis bei programų kodai. Galiausiai nagrinėjamas atskiras diskretaus laiko rizikos modelio atvejis, kai žalos pasiskirsčiusios skirtingai pagal geometrinį dėsnį. Disertacijoje taip pat yra nagrinėjamas diskretaus laiko rizikos modelis su skirtingai pasiskirsčiusiomis žalomis, kurios įgyja racionalias reikšmes, bei kintančiomis įmokomis ir pradiniu kapitalu, taip pat įgyjančiais racionalias reikšmes su tam tikra sąlyga. Įrodomos dvi teoremos kaip rasti tokio modelio baigtinio laiko bankroto tikimybę ir keli... [toliau žr. visą tekstą]In this thesis, the discrete time risk model with inhomogeneous claims is considered. This model is used for describing the insurer‘s capital and its components: initial capital, premiums received, and claims paid. The main risk measures, ruin probabilities and Gerber-Shiu function, are investigated and recursive formulas are obtained. These formulas give fast and accurate evaluation of the finite time ruin probabilities and Gerber-Shiu function. However, the infinite time investigations require that the Gerber-Shiu function's values for the initial capital equal to 0 must be known. This is slightly more difficult due to the claim inhomogeneity and for this reason a theorem with explicit expression of the infinite time Gerber-Shiu function for a zero initial capital is proposed. However, for the calculation of the infinite time values, some assumption about underlying claim structure must be made. As a solution the cyclically distributed claims are proposed, the algorithms for application of the theorems are given and numerical examples with graphical output are presented. Finally, a special case of discrete time risk model with inhomogeneous claims distributed according geometric law is investigated. In addition to the main results, another discrete time risk model with inhomogeneous claims acquiring rational values is investigated. Two theorems for evaluation of the finite time ruin probabilities are proved and some examples are presented.Bankroto tikimybėGerber-Shiu funkcijaDiskretaus laiko rizikos modelisSkirtingai pasiskirsčiusios žalosRuin probabilityGerber-Shiu functionDiscrete time risk modelInhomogeneous claimsDoctoral thesisPaulauskas, VygantasJanuškevičius, RomanasSunklodas, Jonas KazysBaronas, RomasŠutienė, KristinaBikelis, Algimantas JonasKubilius, KęstutisVilnius UniversityVilnius Universityhttp://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20120629_152603-71070LT-eLABa-0001:E.02~2012~D_20120629_152603-71070VU-omabngwosdm-20120514-161547http://vddb.laba.lt/fedora/get/LT-eLABa-0001:E.02~2012~D_20120629_152603-71070/DS.005.0.01.ETDUnrestrictedapplication/pdf
collection NDLTD
language Lithuanian
format Doctoral Thesis
sources NDLTD
topic Mathematics
Bankroto tikimybė
Gerber-Shiu funkcija
Diskretaus laiko rizikos modelis
Skirtingai pasiskirsčiusios žalos
Ruin probability
Gerber-Shiu function
Discrete time risk model
Inhomogeneous claims
spellingShingle Mathematics
Bankroto tikimybė
Gerber-Shiu funkcija
Diskretaus laiko rizikos modelis
Skirtingai pasiskirsčiusios žalos
Ruin probability
Gerber-Shiu function
Discrete time risk model
Inhomogeneous claims
Bieliauskienė, Eugenija
Bankroto tikimybė ir Gerber-Shiu funkcija diskretaus laiko rizikos modeliui su skirtingai pasiskirsčiusiomis žalomis
description Disertaciniame darbe nagrinėjamas diskretaus laiko rizikos modelis su skirtingai pasiskirsčiusiomis žalomis. Šis modelis aprašo draudimo įmonės turtą įtakojančius veiksnius: pradinį kapitalą, gaunamas įmokas, išmokamas žalas. Išvedamos rekursinės formulės, kurių pagalba galima tiksliai ir greitai rasti baigtinio laiko bankroto tikimybių ir Gerber-Shiu funkcijos vertes. Rekursinės formulės taip pat pateikiamos ir begalinio laiko rizikos matams, tačiau nevienodai pasiskirsčiusių žalų atveju iškyla papildomų sunkumų randant bankroto tikimybę ir Gerber-Shiu funkciją, kai pradinis kapitalas lygus 0. Tam įrodoma atskira teorema, tačiau nedarant jokių prielaidų apie žalų pasiskirstymus, apskaičiuoti vertes lengva tikrai nėra. Kaip išeitis pasiūloma cikliškai pasiskirsčiusių žalų struktūra ir pateikiami algoritmai, leidžiantys teoremas pritaikyti praktiškai. Demonstruojant teoremų ir rekursinių formulių veikimą, pateikiami skaitiniai pavyzdžiai su grafinėmis iliustracijomis bei programų kodai. Galiausiai nagrinėjamas atskiras diskretaus laiko rizikos modelio atvejis, kai žalos pasiskirsčiusios skirtingai pagal geometrinį dėsnį. Disertacijoje taip pat yra nagrinėjamas diskretaus laiko rizikos modelis su skirtingai pasiskirsčiusiomis žalomis, kurios įgyja racionalias reikšmes, bei kintančiomis įmokomis ir pradiniu kapitalu, taip pat įgyjančiais racionalias reikšmes su tam tikra sąlyga. Įrodomos dvi teoremos kaip rasti tokio modelio baigtinio laiko bankroto tikimybę ir keli... [toliau žr. visą tekstą] === In this thesis, the discrete time risk model with inhomogeneous claims is considered. This model is used for describing the insurer‘s capital and its components: initial capital, premiums received, and claims paid. The main risk measures, ruin probabilities and Gerber-Shiu function, are investigated and recursive formulas are obtained. These formulas give fast and accurate evaluation of the finite time ruin probabilities and Gerber-Shiu function. However, the infinite time investigations require that the Gerber-Shiu function's values for the initial capital equal to 0 must be known. This is slightly more difficult due to the claim inhomogeneity and for this reason a theorem with explicit expression of the infinite time Gerber-Shiu function for a zero initial capital is proposed. However, for the calculation of the infinite time values, some assumption about underlying claim structure must be made. As a solution the cyclically distributed claims are proposed, the algorithms for application of the theorems are given and numerical examples with graphical output are presented. Finally, a special case of discrete time risk model with inhomogeneous claims distributed according geometric law is investigated. In addition to the main results, another discrete time risk model with inhomogeneous claims acquiring rational values is investigated. Two theorems for evaluation of the finite time ruin probabilities are proved and some examples are presented.
author2 Paulauskas, Vygantas
author_facet Paulauskas, Vygantas
Bieliauskienė, Eugenija
author Bieliauskienė, Eugenija
author_sort Bieliauskienė, Eugenija
title Bankroto tikimybė ir Gerber-Shiu funkcija diskretaus laiko rizikos modeliui su skirtingai pasiskirsčiusiomis žalomis
title_short Bankroto tikimybė ir Gerber-Shiu funkcija diskretaus laiko rizikos modeliui su skirtingai pasiskirsčiusiomis žalomis
title_full Bankroto tikimybė ir Gerber-Shiu funkcija diskretaus laiko rizikos modeliui su skirtingai pasiskirsčiusiomis žalomis
title_fullStr Bankroto tikimybė ir Gerber-Shiu funkcija diskretaus laiko rizikos modeliui su skirtingai pasiskirsčiusiomis žalomis
title_full_unstemmed Bankroto tikimybė ir Gerber-Shiu funkcija diskretaus laiko rizikos modeliui su skirtingai pasiskirsčiusiomis žalomis
title_sort bankroto tikimybė ir gerber-shiu funkcija diskretaus laiko rizikos modeliui su skirtingai pasiskirsčiusiomis žalomis
publisher Lithuanian Academic Libraries Network (LABT)
publishDate 2012
url http://vddb.laba.lt/fedora/get/LT-eLABa-0001:E.02~2012~D_20120629_152603-71070/DS.005.0.01.ETD
work_keys_str_mv AT bieliauskieneeugenija bankrototikimybeirgerbershiufunkcijadiskretauslaikorizikosmodeliuisuskirtingaipasiskirsciusiomiszalomis
AT bieliauskieneeugenija ruinprobabilityandgerbershiufunctionforthediscretetimeriskmodelwithinhomogeneousclaims
_version_ 1716626553937330176