Mechaninių virpesių sistemą aprašančių diferencialinių lygčių sprendinio reiškimas baigtine eksponenčių suma

Šiame darbe tiriamos naujo metodo, skirto funkcijų aproksimavimui baigtine eksponenčių suma galimybės, taikant šį metodą konkrečios diferencialinių lygčių sistemos, aprašančios mechaninius virpesius, sprendiniams. Viena iš galimų darbe pristatomos mechaninių virpesių sistemos taikymo sričių – jūros...

Full description

Bibliographic Details
Main Author: Petkevičiūtė, Daiva
Other Authors: Saulis, Leonas
Format: Dissertation
Language:Lithuanian
Published: Lithuanian Academic Libraries Network (LABT) 2007
Subjects:
Online Access:http://vddb.library.lt/fedora/get/LT-eLABa-0001:E.02~2007~D_20070816_142415-98558/DS.005.0.01.ETD
id ndltd-LABT_ETD-oai-elaba.lt-LT-eLABa-0001-E.02~2007~D_20070816_142415-98558
record_format oai_dc
spelling ndltd-LABT_ETD-oai-elaba.lt-LT-eLABa-0001-E.02~2007~D_20070816_142415-985582014-01-17T03:46:16Z2007-08-16litMathematicsPetkevičiūtė, DaivaMechaninių virpesių sistemą aprašančių diferencialinių lygčių sprendinio reiškimas baigtine eksponenčių sumaExpressing the solution of differential equations that describe the system of mechanical oscillations as a finite sum of exponential functionsLithuanian Academic Libraries Network (LABT)Šiame darbe tiriamos naujo metodo, skirto funkcijų aproksimavimui baigtine eksponenčių suma galimybės, taikant šį metodą konkrečios diferencialinių lygčių sistemos, aprašančios mechaninius virpesius, sprendiniams. Viena iš galimų darbe pristatomos mechaninių virpesių sistemos taikymo sričių – jūros bangų arba vėjo sukeltus virpesius panaudoti kaip atsinaujinantį energijos šaltinį. Tokių mechanizmų veikimo principai prieš pradedant kurti realų veikiantį modelį analizuojami taikant matematinį modeliavimą. Sudėtingos lygčių sistemos sprendiniai, priklausomai nuo sprendimo metodo, gaunami laipsninių eilučių pavidale arba kaip taškų aibė, bet nei viena iš šių formų nėra patogi sprendinio kokybiniam tyrimui. Tačiau turint sprendinio išraišką eksponentinių funkcijų su kompleksiniais koeficientais suma, žinomi ir šį sprendinį sudarančių harmonikų dažniai – svarbi konkretaus virpesių sistemos režimo charakteristika. Atliekant skaitinius eksperimentus nustatyta, jog nusistovėjusį sistemos sprendinį galima įvertinti baigtine eksponenčių suma. Aproksimavimo paklaidos priklauso nuo žingsnio, aproksimuojamos funkcijos ir skaičiavimo paklaidos.The aim of this work was to explore the possibilities of a new method, which gives an ability to approximate functions by a finite sum of exponential functions. This method was applied to the solutions of the concrete differential equations that describe the system of mechanical oscillations. One of the possible application areas of the system of oscillations presented in the paper is to use oscillations caused by the wind or water waves as a source of renewable energy. The action principles of such mechanisms are investigated using mathematical simulation before the real working model. The solutions of the sophisticated system of differential equations are obtained either in the form of power series or a set of points, depending of the solving method chosen. However, none of these forms is convenient for exploring properties of the solution. Therefore, we have a problem to approximate the solutions with linear formations of exponential functions. It is possible then to express the solutions as the linear formations of harmonics. It is demonstrated that a steady solution of the system can be expressed as a finite sum of exponential functions. Approximation errors vary depending on the distance between the points used, the function, which is being approximated, and the computation errors.Mechaninių virpesių sistemaHankelio matricosOperatorinis metodasSystem of mechanical oscillationsHankel matricesOperator methodMaster thesisSaulis, LeonasValakevičius, EimutisAksomaitis, Algimantas JonasBarauskas, ArūnasJanilionis, VytautasNavickas, ZenonasPekarskas, Vidmantas PovilasRudzkis, RimantasRagulskis, KazimierasPlukas, KostasKaunas University of TechnologyKaunas University of Technologyhttp://vddb.library.lt/obj/LT-eLABa-0001:E.02~2007~D_20070816_142415-98558LT-eLABa-0001:E.02~2007~D_20070816_142415-98558KTU-ombapfxoris-20070607-174131http://vddb.library.lt/fedora/get/LT-eLABa-0001:E.02~2007~D_20070816_142415-98558/DS.005.0.01.ETDUnrestrictedapplication/pdf
collection NDLTD
language Lithuanian
format Dissertation
sources NDLTD
topic Mathematics
Mechaninių virpesių sistema
Hankelio matricos
Operatorinis metodas
System of mechanical oscillations
Hankel matrices
Operator method
spellingShingle Mathematics
Mechaninių virpesių sistema
Hankelio matricos
Operatorinis metodas
System of mechanical oscillations
Hankel matrices
Operator method
Petkevičiūtė, Daiva
Mechaninių virpesių sistemą aprašančių diferencialinių lygčių sprendinio reiškimas baigtine eksponenčių suma
description Šiame darbe tiriamos naujo metodo, skirto funkcijų aproksimavimui baigtine eksponenčių suma galimybės, taikant šį metodą konkrečios diferencialinių lygčių sistemos, aprašančios mechaninius virpesius, sprendiniams. Viena iš galimų darbe pristatomos mechaninių virpesių sistemos taikymo sričių – jūros bangų arba vėjo sukeltus virpesius panaudoti kaip atsinaujinantį energijos šaltinį. Tokių mechanizmų veikimo principai prieš pradedant kurti realų veikiantį modelį analizuojami taikant matematinį modeliavimą. Sudėtingos lygčių sistemos sprendiniai, priklausomai nuo sprendimo metodo, gaunami laipsninių eilučių pavidale arba kaip taškų aibė, bet nei viena iš šių formų nėra patogi sprendinio kokybiniam tyrimui. Tačiau turint sprendinio išraišką eksponentinių funkcijų su kompleksiniais koeficientais suma, žinomi ir šį sprendinį sudarančių harmonikų dažniai – svarbi konkretaus virpesių sistemos režimo charakteristika. Atliekant skaitinius eksperimentus nustatyta, jog nusistovėjusį sistemos sprendinį galima įvertinti baigtine eksponenčių suma. Aproksimavimo paklaidos priklauso nuo žingsnio, aproksimuojamos funkcijos ir skaičiavimo paklaidos. === The aim of this work was to explore the possibilities of a new method, which gives an ability to approximate functions by a finite sum of exponential functions. This method was applied to the solutions of the concrete differential equations that describe the system of mechanical oscillations. One of the possible application areas of the system of oscillations presented in the paper is to use oscillations caused by the wind or water waves as a source of renewable energy. The action principles of such mechanisms are investigated using mathematical simulation before the real working model. The solutions of the sophisticated system of differential equations are obtained either in the form of power series or a set of points, depending of the solving method chosen. However, none of these forms is convenient for exploring properties of the solution. Therefore, we have a problem to approximate the solutions with linear formations of exponential functions. It is possible then to express the solutions as the linear formations of harmonics. It is demonstrated that a steady solution of the system can be expressed as a finite sum of exponential functions. Approximation errors vary depending on the distance between the points used, the function, which is being approximated, and the computation errors.
author2 Saulis, Leonas
author_facet Saulis, Leonas
Petkevičiūtė, Daiva
author Petkevičiūtė, Daiva
author_sort Petkevičiūtė, Daiva
title Mechaninių virpesių sistemą aprašančių diferencialinių lygčių sprendinio reiškimas baigtine eksponenčių suma
title_short Mechaninių virpesių sistemą aprašančių diferencialinių lygčių sprendinio reiškimas baigtine eksponenčių suma
title_full Mechaninių virpesių sistemą aprašančių diferencialinių lygčių sprendinio reiškimas baigtine eksponenčių suma
title_fullStr Mechaninių virpesių sistemą aprašančių diferencialinių lygčių sprendinio reiškimas baigtine eksponenčių suma
title_full_unstemmed Mechaninių virpesių sistemą aprašančių diferencialinių lygčių sprendinio reiškimas baigtine eksponenčių suma
title_sort mechaninių virpesių sistemą aprašančių diferencialinių lygčių sprendinio reiškimas baigtine eksponenčių suma
publisher Lithuanian Academic Libraries Network (LABT)
publishDate 2007
url http://vddb.library.lt/fedora/get/LT-eLABa-0001:E.02~2007~D_20070816_142415-98558/DS.005.0.01.ETD
work_keys_str_mv AT petkeviciutedaiva mechaniniuvirpesiusistemaaprasanciudiferencialiniulygciusprendinioreiskimasbaigtineeksponenciusuma
AT petkeviciutedaiva expressingthesolutionofdifferentialequationsthatdescribethesystemofmechanicaloscillationsasafinitesumofexponentialfunctions
_version_ 1716625462254370816