Verslo analizės metodų taikymas mažų įmonių informacinėse sistemose

In current work problems and requirements for demand forecasting in commercial or manufacturing enterprises are analyzed and suitable forecasting algorithms are proposed. In enterprises with multidimensional and heterogeneous demand it is advisable to use different algorithms for different demand co...

Full description

Bibliographic Details
Main Author: Reipas, Artūras
Other Authors: Kiauleikis, Valentinas
Format: Dissertation
Language:Lithuanian
Published: Lithuanian Academic Libraries Network (LABT) 2007
Subjects:
UML
Online Access:http://vddb.library.lt/fedora/get/LT-eLABa-0001:E.02~2007~D_20070115_092850-31887/DS.005.0.02.ETD
id ndltd-LABT_ETD-oai-elaba.lt-LT-eLABa-0001-E.02~2007~D_20070115_092850-31887
record_format oai_dc
spelling ndltd-LABT_ETD-oai-elaba.lt-LT-eLABa-0001-E.02~2007~D_20070115_092850-318872013-11-16T03:59:00Z2007-01-15litInformaticsReipas, ArtūrasVerslo analizės metodų taikymas mažų įmonių informacinėse sistemoseApplication of business analysis methods for small enterprisesLithuanian Academic Libraries Network (LABT)In current work problems and requirements for demand forecasting in commercial or manufacturing enterprises are analyzed and suitable forecasting algorithms are proposed. In enterprises with multidimensional and heterogeneous demand it is advisable to use different algorithms for different demand constituents and to readjust parameters used for forecasting. Existing forecasting packages are not practical as they are not integrated with commodities or materials supply orders management activities and business processes of enterprise. The orders management system is developed with forecasting component using adopted time series forecasting techniques such as moving average, exponential smoothing, double exponential smoothing. These techniques ensure reliable forecasting results for different time series models: random, trend and are integrated with other business management activities. It is possible to calculate deviations of forecasted demand from factual values, to select algorithms giving minimal perсentage error, and to adjust algorithms parameters to changing demand. The system can help managers to choose forecasting algorithms and to adapt their parameters in the course of time. The system is designed using UML CASE tool and implemented in Microsoft .Net environment using MS SQL Server 2005 for data storage.Information technologiesUMLInformacinės technologijosDuomenų analizėData miningMaster thesisKiauleikis, ValentinasGudas, SauliusBareiša, EduardasButleris, RimantasLopata, AndriusStulpinas, RaimundasNemuraitė, LinaButkienė, RitaKaunas University of TechnologyKaunas University of Technologyhttp://vddb.library.lt/obj/LT-eLABa-0001:E.02~2007~D_20070115_092850-31887LT-eLABa-0001:E.02~2007~D_20070115_092850-31887KTU-LABT20070115-092850-31887http://vddb.library.lt/fedora/get/LT-eLABa-0001:E.02~2007~D_20070115_092850-31887/DS.005.0.02.ETDUnrestrictedapplication/pdf
collection NDLTD
language Lithuanian
format Dissertation
sources NDLTD
topic Informatics
Information technologies
UML
Informacinės technologijos
Duomenų analizė
Data mining
spellingShingle Informatics
Information technologies
UML
Informacinės technologijos
Duomenų analizė
Data mining
Reipas, Artūras
Verslo analizės metodų taikymas mažų įmonių informacinėse sistemose
description In current work problems and requirements for demand forecasting in commercial or manufacturing enterprises are analyzed and suitable forecasting algorithms are proposed. In enterprises with multidimensional and heterogeneous demand it is advisable to use different algorithms for different demand constituents and to readjust parameters used for forecasting. Existing forecasting packages are not practical as they are not integrated with commodities or materials supply orders management activities and business processes of enterprise. The orders management system is developed with forecasting component using adopted time series forecasting techniques such as moving average, exponential smoothing, double exponential smoothing. These techniques ensure reliable forecasting results for different time series models: random, trend and are integrated with other business management activities. It is possible to calculate deviations of forecasted demand from factual values, to select algorithms giving minimal perсentage error, and to adjust algorithms parameters to changing demand. The system can help managers to choose forecasting algorithms and to adapt their parameters in the course of time. The system is designed using UML CASE tool and implemented in Microsoft .Net environment using MS SQL Server 2005 for data storage.
author2 Kiauleikis, Valentinas
author_facet Kiauleikis, Valentinas
Reipas, Artūras
author Reipas, Artūras
author_sort Reipas, Artūras
title Verslo analizės metodų taikymas mažų įmonių informacinėse sistemose
title_short Verslo analizės metodų taikymas mažų įmonių informacinėse sistemose
title_full Verslo analizės metodų taikymas mažų įmonių informacinėse sistemose
title_fullStr Verslo analizės metodų taikymas mažų įmonių informacinėse sistemose
title_full_unstemmed Verslo analizės metodų taikymas mažų įmonių informacinėse sistemose
title_sort verslo analizės metodų taikymas mažų įmonių informacinėse sistemose
publisher Lithuanian Academic Libraries Network (LABT)
publishDate 2007
url http://vddb.library.lt/fedora/get/LT-eLABa-0001:E.02~2007~D_20070115_092850-31887/DS.005.0.02.ETD
work_keys_str_mv AT reipasarturas versloanalizesmetodutaikymasmazuimoniuinformacinesesistemose
AT reipasarturas applicationofbusinessanalysismethodsforsmallenterprises
_version_ 1716614700206129152