Stipriai pirminiai moduliai virš žiedų
The purpose of this work is to analyse the analogue of prime modules in commutative case – strongly prime modules over rings in non-commutative case. Strongly prime modules over rings, two-sided and one-sided strongly prime ideals in the rings are examined in the work. Concepts and theorems related...
Main Author: | |
---|---|
Other Authors: | |
Format: | Dissertation |
Language: | Lithuanian |
Published: |
Lithuanian Academic Libraries Network (LABT)
2005
|
Subjects: | |
Online Access: | http://vddb.library.lt/fedora/get/LT-eLABa-0001:E.02~2005~D_20050623_152837-34895/DS.005.0.02.ETD |
id |
ndltd-LABT_ETD-oai-elaba.lt-LT-eLABa-0001-E.02~2005~D_20050623_152837-34895 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-LABT_ETD-oai-elaba.lt-LT-eLABa-0001-E.02~2005~D_20050623_152837-348952013-11-16T03:58:06Z2005-06-23litMathematicsBandalevičiūtė, MarijanaStipriai pirminiai moduliai virš žiedųStrongly prime modules over ringsLithuanian Academic Libraries Network (LABT)The purpose of this work is to analyse the analogue of prime modules in commutative case – strongly prime modules over rings in non-commutative case. Strongly prime modules over rings, two-sided and one-sided strongly prime ideals in the rings are examined in the work. Concepts and theorems related to this topic are analysed in the paper. These problems are solved: • Taking the homomorphism of the ring R into ring of endomorphisms of the Abelian group we get all the modules over the ring R. • Annihilators of the nonzero elements of the module over commutative ring coincide and are the prime ideal. • In non-commutative case module is strongly prime only in the case when annihilators its nonzero elements are equivalent. • Finite Cartesian product of strongly prime modules, in which annihilators of the nonzero elements are equivalent, is a strongly prime module.Kvaziinjektyvus modulis virš žiedo RPomodulio esminis plėtinysStipriai pirminis modulisAnnihiliatorHomomorphism of the ring RModulio plėtinysStrongly prime modules over ringsPomodulisŽiedasŽiedų homomorfizmasRingŽiedo R modulio injektyvus apvalkalasKairiųjų R-modulių homomorfizmasIdealasIdealAnuliatoriusFaktormodulisModulesMaster thesisBaliukonytė, StasėJanuškevičius, RomanasKaučikas, AlgirdasMazėtis, EdmundasZybartas, SauliusVilnius Pedagogical UniversityVilnius Pedagogical Universityhttp://vddb.library.lt/obj/LT-eLABa-0001:E.02~2005~D_20050623_152837-34895LT-eLABa-0001:E.02~2005~D_20050623_152837-34895VPU-LABT20050623-152837-34895http://vddb.library.lt/fedora/get/LT-eLABa-0001:E.02~2005~D_20050623_152837-34895/DS.005.0.02.ETDUnrestrictedapplication/pdf |
collection |
NDLTD |
language |
Lithuanian |
format |
Dissertation |
sources |
NDLTD |
topic |
Mathematics Kvaziinjektyvus modulis virš žiedo R Pomodulio esminis plėtinys Stipriai pirminis modulis Annihiliator Homomorphism of the ring R Modulio plėtinys Strongly prime modules over rings Pomodulis Žiedas Žiedų homomorfizmas Ring Žiedo R modulio injektyvus apvalkalas Kairiųjų R-modulių homomorfizmas Idealas Ideal Anuliatorius Faktormodulis Modules |
spellingShingle |
Mathematics Kvaziinjektyvus modulis virš žiedo R Pomodulio esminis plėtinys Stipriai pirminis modulis Annihiliator Homomorphism of the ring R Modulio plėtinys Strongly prime modules over rings Pomodulis Žiedas Žiedų homomorfizmas Ring Žiedo R modulio injektyvus apvalkalas Kairiųjų R-modulių homomorfizmas Idealas Ideal Anuliatorius Faktormodulis Modules Bandalevičiūtė, Marijana Stipriai pirminiai moduliai virš žiedų |
description |
The purpose of this work is to analyse the analogue of prime modules in commutative case – strongly prime modules over rings in non-commutative case. Strongly prime modules over rings, two-sided and one-sided strongly prime ideals in the rings are examined in the work. Concepts and theorems related to this topic are analysed in the paper. These problems are solved: • Taking the homomorphism of the ring R into ring of endomorphisms of the Abelian group we get all the modules over the ring R. • Annihilators of the nonzero elements of the module over commutative ring coincide and are the prime ideal. • In non-commutative case module is strongly prime only in the case when annihilators its nonzero elements are equivalent. • Finite Cartesian product of strongly prime modules, in which annihilators of the nonzero elements are equivalent, is a strongly prime module. |
author2 |
Baliukonytė, Stasė |
author_facet |
Baliukonytė, Stasė Bandalevičiūtė, Marijana |
author |
Bandalevičiūtė, Marijana |
author_sort |
Bandalevičiūtė, Marijana |
title |
Stipriai pirminiai moduliai virš žiedų |
title_short |
Stipriai pirminiai moduliai virš žiedų |
title_full |
Stipriai pirminiai moduliai virš žiedų |
title_fullStr |
Stipriai pirminiai moduliai virš žiedų |
title_full_unstemmed |
Stipriai pirminiai moduliai virš žiedų |
title_sort |
stipriai pirminiai moduliai virš žiedų |
publisher |
Lithuanian Academic Libraries Network (LABT) |
publishDate |
2005 |
url |
http://vddb.library.lt/fedora/get/LT-eLABa-0001:E.02~2005~D_20050623_152837-34895/DS.005.0.02.ETD |
work_keys_str_mv |
AT bandaleviciutemarijana stipriaipirminiaimoduliaivirsziedu AT bandaleviciutemarijana stronglyprimemodulesoverrings |
_version_ |
1716614470462078976 |