Apatinių ekstremumų asimptotiniai tyrimai
The lower extreme asymptotic is analised in this master’s work. I have analysed the marginal term case, when sample size N is accidental. The ordinary accidental sample is taken from general set, what is spreaded along logistic low. I have searched for logistic dimensions minimum limiting distributi...
Main Author: | |
---|---|
Other Authors: | |
Format: | Dissertation |
Language: | Lithuanian |
Published: |
Lithuanian Academic Libraries Network (LABT)
2004
|
Subjects: | |
Online Access: | http://vddb.library.lt/fedora/get/LT-eLABa-0001:E.02~2004~D_20040603_185537-22763/DS.005.0.01.ETD |
id |
ndltd-LABT_ETD-oai-elaba.lt-LT-eLABa-0001-E.02~2004~D_20040603_185537-22763 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-LABT_ETD-oai-elaba.lt-LT-eLABa-0001-E.02~2004~D_20040603_185537-227632014-01-16T03:37:29Z2004-06-03litMathematicsMontvydaitė, IndraApatinių ekstremumų asimptotiniai tyrimaiLower extreme asymptotical analysisLithuanian Academic Libraries Network (LABT)The lower extreme asymptotic is analised in this master’s work. I have analysed the marginal term case, when sample size N is accidental. The ordinary accidental sample is taken from general set, what is spreaded along logistic low. I have searched for logistic dimensions minimum limiting distribution function in the investigative part. Than I’ve practised transfering theorem. My task is to find such normalization, along what logistic dimensions lower extreme distribution functions are geometrically ministable or asymptotically k-stable. I have proved in my job, that first lower extreme distribution function is geometrically ministable, and other distribution functions – asymptotically k-stable.Lower extremeApatiniai ekstremumaiMaster thesisRudzkis, RimantasJanilionis, VytautasSapagovas, J.Navickas, ZenonasAksomaitis, J.A.Aksomaitis, Algimantas JonasSaulis, LeonasPekarskas, Vidmantas PovilasKaunas University of TechnologyKaunas University of Technologyhttp://vddb.library.lt/obj/LT-eLABa-0001:E.02~2004~D_20040603_185537-22763LT-eLABa-0001:E.02~2004~D_20040603_185537-22763KTU-LABT20040603-185537-22763http://vddb.library.lt/fedora/get/LT-eLABa-0001:E.02~2004~D_20040603_185537-22763/DS.005.0.01.ETDUnrestrictedapplication/pdf |
collection |
NDLTD |
language |
Lithuanian |
format |
Dissertation |
sources |
NDLTD |
topic |
Mathematics Lower extreme Apatiniai ekstremumai |
spellingShingle |
Mathematics Lower extreme Apatiniai ekstremumai Montvydaitė, Indra Apatinių ekstremumų asimptotiniai tyrimai |
description |
The lower extreme asymptotic is analised in this master’s work. I have analysed the marginal term case, when sample size N is accidental. The ordinary accidental sample is taken from general set, what is spreaded along logistic low. I have searched for logistic dimensions minimum limiting distribution function in the investigative part. Than I’ve practised transfering theorem. My task is to find such normalization, along what logistic dimensions lower extreme distribution functions are geometrically ministable or asymptotically k-stable. I have proved in my job, that first lower extreme distribution function is geometrically ministable, and other distribution functions – asymptotically k-stable. |
author2 |
Rudzkis, Rimantas |
author_facet |
Rudzkis, Rimantas Montvydaitė, Indra |
author |
Montvydaitė, Indra |
author_sort |
Montvydaitė, Indra |
title |
Apatinių ekstremumų asimptotiniai tyrimai |
title_short |
Apatinių ekstremumų asimptotiniai tyrimai |
title_full |
Apatinių ekstremumų asimptotiniai tyrimai |
title_fullStr |
Apatinių ekstremumų asimptotiniai tyrimai |
title_full_unstemmed |
Apatinių ekstremumų asimptotiniai tyrimai |
title_sort |
apatinių ekstremumų asimptotiniai tyrimai |
publisher |
Lithuanian Academic Libraries Network (LABT) |
publishDate |
2004 |
url |
http://vddb.library.lt/fedora/get/LT-eLABa-0001:E.02~2004~D_20040603_185537-22763/DS.005.0.01.ETD |
work_keys_str_mv |
AT montvydaiteindra apatiniuekstremumuasimptotiniaityrimai AT montvydaiteindra lowerextremeasymptoticalanalysis |
_version_ |
1716623518726094848 |