Discrete element method model of the first break wheat milling process

Master of Science === Department of Grain Science and Industry === Kingsly Ambrose === It is a well-known phenomenon that the break-release, particle size and size distribution of wheat milling are functions of machine operational parameters and grain properties. Due to the non-uniformity in charact...

Full description

Bibliographic Details
Main Author: Patwa, Abhay
Language:en_US
Published: Kansas State University 2014
Subjects:
Online Access:http://hdl.handle.net/2097/18668
id ndltd-KSU-oai-krex.k-state.edu-2097-18668
record_format oai_dc
spelling ndltd-KSU-oai-krex.k-state.edu-2097-186682016-03-01T03:52:21Z Discrete element method model of the first break wheat milling process Patwa, Abhay Discrete element method Wheat milling First break Food Science (0359) Master of Science Department of Grain Science and Industry Kingsly Ambrose It is a well-known phenomenon that the break-release, particle size and size distribution of wheat milling are functions of machine operational parameters and grain properties. Due to the non-uniformity in characteristics and properties of wheat kernel, the kernel physical and mechanical properties may affect the size reduction process. The discrete element method (DEM) is a numerical modeling technique that can be used to study and understand the effect of physical and mechanical properties of a material on processing. The overall objective of this study is to develop a DEM model of the 1st break wheat milling process. In this study, different physical and mechanical properties of wheat mill streams were determined for using as the input parameters in DEM model development. The particle size and size distribution (PSD), true, bulk and tapped density, young’s modulus, coefficient of static and rolling friction, and coefficient of restitution were measured for wheat kernel, 1st break and flour from hard red winter (HRW), hard red spring (HRS), and soft red winter (SRW) wheat. Overall moisture content was found to have a greater significant effect on the physical properties i.e. density and PSD of the mill streams than material properties i.e. Young’s modulus, coefficients of friction and coefficient of restitution. The DEM model of 1st break wheat milling was developed using both single and multi-sphere approaches. The single sphere approach simulated the size reduction of a spherical cluster of bonded particles with mono-sized particles. The model was simulated for hard red winter (HRW) wheat milling at 16% moisture levels and validated using lab scale milling trials giving a PSD of 437.73 m with a percent deviation of prediction of 235.37. The deviation of prediction was reduced to 192.29 with a mean PSD of 371.52 m by conducting sensitivity analysis by modifying the shear modulus and coefficient of restitution values. In the multi-sphere approach, a bonded cluster resembling a wheat kernel in shape and size was used to simulate the milling process. The model predicted a 1st break PSD of 412.65 µm which had a deviation of 185.89 from lab scale and 156.78 from plant scale milling. The model could however satisfactorily predict the variation in PSD from 1st break milling with moisture content with reasonable accuracy. Future capabilities using the model include performing additional sensitivity analysis to understand the effect of other mechanical properties of wheat on the 1st break PSD. It can also be used to improve the 1st break release during wheat milling. 2014-11-13T21:37:43Z 2014-11-13T21:37:43Z 2014-11-13 2014 December Thesis http://hdl.handle.net/2097/18668 en_US Kansas State University
collection NDLTD
language en_US
sources NDLTD
topic Discrete element method
Wheat milling
First break
Food Science (0359)
spellingShingle Discrete element method
Wheat milling
First break
Food Science (0359)
Patwa, Abhay
Discrete element method model of the first break wheat milling process
description Master of Science === Department of Grain Science and Industry === Kingsly Ambrose === It is a well-known phenomenon that the break-release, particle size and size distribution of wheat milling are functions of machine operational parameters and grain properties. Due to the non-uniformity in characteristics and properties of wheat kernel, the kernel physical and mechanical properties may affect the size reduction process. The discrete element method (DEM) is a numerical modeling technique that can be used to study and understand the effect of physical and mechanical properties of a material on processing. The overall objective of this study is to develop a DEM model of the 1st break wheat milling process. In this study, different physical and mechanical properties of wheat mill streams were determined for using as the input parameters in DEM model development. The particle size and size distribution (PSD), true, bulk and tapped density, young’s modulus, coefficient of static and rolling friction, and coefficient of restitution were measured for wheat kernel, 1st break and flour from hard red winter (HRW), hard red spring (HRS), and soft red winter (SRW) wheat. Overall moisture content was found to have a greater significant effect on the physical properties i.e. density and PSD of the mill streams than material properties i.e. Young’s modulus, coefficients of friction and coefficient of restitution. The DEM model of 1st break wheat milling was developed using both single and multi-sphere approaches. The single sphere approach simulated the size reduction of a spherical cluster of bonded particles with mono-sized particles. The model was simulated for hard red winter (HRW) wheat milling at 16% moisture levels and validated using lab scale milling trials giving a PSD of 437.73 m with a percent deviation of prediction of 235.37. The deviation of prediction was reduced to 192.29 with a mean PSD of 371.52 m by conducting sensitivity analysis by modifying the shear modulus and coefficient of restitution values. In the multi-sphere approach, a bonded cluster resembling a wheat kernel in shape and size was used to simulate the milling process. The model predicted a 1st break PSD of 412.65 µm which had a deviation of 185.89 from lab scale and 156.78 from plant scale milling. The model could however satisfactorily predict the variation in PSD from 1st break milling with moisture content with reasonable accuracy. Future capabilities using the model include performing additional sensitivity analysis to understand the effect of other mechanical properties of wheat on the 1st break PSD. It can also be used to improve the 1st break release during wheat milling.
author Patwa, Abhay
author_facet Patwa, Abhay
author_sort Patwa, Abhay
title Discrete element method model of the first break wheat milling process
title_short Discrete element method model of the first break wheat milling process
title_full Discrete element method model of the first break wheat milling process
title_fullStr Discrete element method model of the first break wheat milling process
title_full_unstemmed Discrete element method model of the first break wheat milling process
title_sort discrete element method model of the first break wheat milling process
publisher Kansas State University
publishDate 2014
url http://hdl.handle.net/2097/18668
work_keys_str_mv AT patwaabhay discreteelementmethodmodelofthefirstbreakwheatmillingprocess
_version_ 1718196921504366592