Summary: | Indiana University-Purdue University Indianapolis (IUPUI) === A recent review of randomized controlled trials found that trivalent chromium (Cr3+) supplementation significantly improved glycemia among patients with diabetes, consistent with a long-standing appreciation that this micronutrient optimizes carbohydrate metabolism. Nevertheless, a clear limitation in the current evidence is a lack of understanding of Cr3+ action. We tested if increased AMP-activated protein kinase (AMPK) activity, previously observed in Cr3+-treated cells or tissues from Cr3+-supplemented animals, mediates improved glucose transport regulation under insulin-resistant hyperinsulinemic conditions. In L6 myotubes stably expressing the glucose transporter GLUT4 carrying an exofacial myc-epitope tag, acute insulin stimulation increased GLUT4myc translocation by 69% and glucose uptake by 97%. In contrast, the hyperinsulinemic state impaired insulin stimulation of these processes. Consistent with Cr3+’s beneficial effect on glycemic status, chromium picolinate (CrPic) restored insulin’s ability to fully regulate GLUT4myc translocation and glucose transport. Insulin-resistant myotubes did not display impaired insulin signaling, nor did CrPic amplify insulin signaling. However, CrPic normalized elevated membrane cholesterol that impaired cortical filamentous actin (F-actin) structure. Mechanistically, data support that CrPic lowered membrane cholesterol via AMPK. Consistent with this data, siRNA-mediated AMPK silencing blocked CrPic’s beneficial effects on GLUT4 and glucose transport regulation. Furthermore, the AMPK agonist 5-aminoimidazole-4-carboxamide-1-ß-D-ribonucleoside (AICAR) protected against hyperinsulinemia-induced membrane/cytoskeletal defects and GLUT4 dysregulation. To next test Cr3+ action in vivo, we utilized obesity-prone C57Bl/6J mice fed a low fat (LF) or high fat (HF) diet for eight weeks without or with CrPic supplementation administered in the drinking water (8 µg/kg/day). HF feeding increased body weight beginning four weeks after diet intervention regardless of CrPic supplementation and was independent of changes in food consumption. Early CrPic supplementation during a five week acclimation period protected against glucose intolerance induced by the subsequent eight weeks of HF feeding. As observed in other insulin-resistant animal models, skeletal muscle from HF-fed mice displayed membrane cholesterol accrual and loss of F-actin. Skeletal muscle from CrPic-supplemented HF-fed mice showed increased AMPK activity and protection against membrane cholesterol accrual and F-actin loss. Together these data suggest a mechanism by which Cr3+ may positively impact glycemic status, thereby stressing a plausible beneficial action of Cr3+ in glucose homeostasis.
|