Analysis of Process Induced Shape Deformations and Residual Stresses in Composite Parts during Cure
Indiana University-Purdue University Indianapolis (IUPUI) === Process induced dimensional changes in composite parts has been the topic of interest for many researchers. The residual stresses that are induced in composite laminates during curing process while the laminate is in contact with the pr...
Main Author: | |
---|---|
Other Authors: | |
Language: | en_US |
Published: |
2019
|
Subjects: | |
Online Access: | http://hdl.handle.net/1805/18935 |
id |
ndltd-IUPUI-oai-scholarworks.iupui.edu-1805-18935 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-IUPUI-oai-scholarworks.iupui.edu-1805-189352019-05-10T15:21:59Z Analysis of Process Induced Shape Deformations and Residual Stresses in Composite Parts during Cure Patil, Ameya S. Dalir, Hamid El-Mounayri, Hazim Zhang, Jing Residual stresses Process induced shape deformations Resin shrinkage Indiana University-Purdue University Indianapolis (IUPUI) Process induced dimensional changes in composite parts has been the topic of interest for many researchers. The residual stresses that are induced in composite laminates during curing process while the laminate is in contact with the process tool often lead to dimensional variations such as spring-in of angles and warpage of flat panels. The traditional trial-and-error approach can work for simple geometries, but composite parts with complex shapes require more sophisticated models. When composite laminates are subjected to thermal stresses, such as the heating and cooling processes during curing, they can become distorted as the in-plane and the throughthickness coeffcients of thermal expansion are di erent, as well as chemical shrinkage of the resin, usually cause spring-in. Deformed components can cause problems during assembly, which significantly increases production costs and affects performance. This thesis focuses on predicting these shape deformations using software simulation of composite manufacturing and curing. Various factors such as resin shrinkage, degrees of cure, difference between through thickness coeffcient of thermal expansion of the composite laminate are taken into the consideration. A cure kinetic model is presented which illustrates the matrix behavior during cure. The results obtained using the software then were compared with the experimental values of spring-in from the available literature. The accuracy of ACCS package was validated in this study. Analyzing the effects of various parameters of it was estimated that 3D part simulation is an effective and cost and time saving method to predict nal shape of the composite part. 2019-04-24T15:25:18Z 2019-04-24T15:25:18Z 2019-05 Thesis http://hdl.handle.net/1805/18935 en_US |
collection |
NDLTD |
language |
en_US |
sources |
NDLTD |
topic |
Residual stresses Process induced shape deformations Resin shrinkage |
spellingShingle |
Residual stresses Process induced shape deformations Resin shrinkage Patil, Ameya S. Analysis of Process Induced Shape Deformations and Residual Stresses in Composite Parts during Cure |
description |
Indiana University-Purdue University Indianapolis (IUPUI) === Process induced dimensional changes in composite parts has been the topic of
interest for many researchers. The residual stresses that are induced in composite
laminates during curing process while the laminate is in contact with the process
tool often lead to dimensional variations such as spring-in of angles and warpage of
flat panels. The traditional trial-and-error approach can work for simple geometries,
but composite parts with complex shapes require more sophisticated models. When
composite laminates are subjected to thermal stresses, such as the heating and cooling
processes during curing, they can become distorted as the in-plane and the throughthickness coeffcients of thermal expansion are di erent, as well as chemical shrinkage of the resin, usually cause spring-in. Deformed components can cause problems during assembly, which significantly increases production costs and affects performance. This thesis focuses on predicting these shape deformations using software simulation of composite manufacturing and curing. Various factors such as resin shrinkage, degrees of cure, difference between through thickness coeffcient of thermal expansion of the composite laminate are taken into the consideration. A cure kinetic model is presented which illustrates the matrix behavior during cure. The results obtained using the software then were compared with the experimental values of spring-in from the
available literature. The accuracy of ACCS package was validated in this study.
Analyzing the effects of various parameters of it was estimated that 3D part simulation
is an effective and cost and time saving method to predict nal shape of the composite
part. |
author2 |
Dalir, Hamid |
author_facet |
Dalir, Hamid Patil, Ameya S. |
author |
Patil, Ameya S. |
author_sort |
Patil, Ameya S. |
title |
Analysis of Process Induced Shape Deformations and Residual Stresses in Composite Parts during Cure |
title_short |
Analysis of Process Induced Shape Deformations and Residual Stresses in Composite Parts during Cure |
title_full |
Analysis of Process Induced Shape Deformations and Residual Stresses in Composite Parts during Cure |
title_fullStr |
Analysis of Process Induced Shape Deformations and Residual Stresses in Composite Parts during Cure |
title_full_unstemmed |
Analysis of Process Induced Shape Deformations and Residual Stresses in Composite Parts during Cure |
title_sort |
analysis of process induced shape deformations and residual stresses in composite parts during cure |
publishDate |
2019 |
url |
http://hdl.handle.net/1805/18935 |
work_keys_str_mv |
AT patilameyas analysisofprocessinducedshapedeformationsandresidualstressesincompositepartsduringcure |
_version_ |
1719080215856021504 |