Structural Studies On The Enzymes FabI And FabZ Of Plasmodium Falciparum

The thesis deals with X-ray crystallographic analysis of two enzymes involved in the fatty acid biosynthesis pathway, known as Fatty Acid Synthase or FAS, of the malarial parasite, Plasmodium falciparum, in order to understand their functions at the atomic level and to provide structural basis for t...

Full description

Bibliographic Details
Main Author: Pidugu, Lakshmi Swarna Mukhi
Other Authors: Suguna, K
Language:en_US
Published: 2008
Subjects:
Online Access:http://hdl.handle.net/2005/381
Description
Summary:The thesis deals with X-ray crystallographic analysis of two enzymes involved in the fatty acid biosynthesis pathway, known as Fatty Acid Synthase or FAS, of the malarial parasite, Plasmodium falciparum, in order to understand their functions at the atomic level and to provide structural basis for the rational design of antimalarial compounds. Targeting highly specific and well-characterized biochemical pathways to develop effective therapeutic agents has the advantage of designing new drugs or modifying the existing ones based on the details of the known features of the processes. Knowledge of the three-dimensional structures of the molecules involved in the reactions will enhance the capabilities of this procedure. The recently identified fatty acid biosynthesis pathway in Plasmodium falciparum is undoubtedly an attractive target for drug development as it differs from that in humans. In the malarial parasite, each reaction of the pathway is catalyzed by a specific enzyme whereas in humans, the synthesis is carried out by a single multidomain enzyme. Essentially each step in the FAS of P. falciparum can be a potential target to prevent the growth of the parasite as the fatty acids are essential for the formation of the cell membrane which is vital for its survival. All the reactions of this pathway have been well-characterized. Nevertheless, there is a dearth of structural information of the proteins involved in performing various functions in this pathway. When this work was initiated, crystal structures of none of these proteins were reported. The current work on the plasmodial FAS proteins has been undertaken with a view to obtain precise structural details of their reaction and inhibition mechanisms. The introductory chapter of the thesis includes a discussion on malaria, the fatty acid biosynthesis in various organisms and an overview of the structural features of the enzymes involved in the pathway that have been characterized from other organisms.The second chapter includes the tools of X-ray crystallography that were used for structural studies of the present work. It also discusses the other computational and biophysical methods used to further characterize the enzymes under study. FabI, the enoyl acyl carrier protein reductase, that regulates the third step in FAS has been crystallized as a binary complex with its cofactor NADH and as a ternary complex with NAD+and triclosan. The crystal structures of the binary and the ternary complexes have been determined at 2.5 and 2.2 ˚A, respectively. The mode of binding of the cofactor and the inhibitor triclosan to the enzyme with details of the interactions between them could be clearly obtained from these structures. Each subunit of the tetrameric FabI has the classical Rossmann fold. We carried out a thorough analysis of this structure and compared it with the FabI structures from various sources, four microbial (Escherichia coli, Mycobacterium tuberculosis and Helicobacter pylori) and one plant (Brassica napus), and arrived at a number of significant conclusions: Though the tertiary and the quaternary structures of the enzymes from different sources are similar, the substrate binding loop shows significant changes. The position and nature of the loop are strongly correlated to the affinity of triclosan to the enzyme. Small to major changes in the structure of the enzyme occur to enhance ligand binding. Water molecules play an important role in enzyme-ligand interactions. The crystal structure has also confirmed our previous prediction based on modeling studies of the enzyme that the introduction of bulkier groups at carbon 4’ of triclosan is likely to improve its efficacy as an inhibitor of FabI of P. falciparum. It has also provided the structural basis for its preference to bind to the coenzyme NADH but not to NADPH which was also predicted by our modeling studies. Chapters 3 and 4 discuss the structure solution and a comparative analysis of the crystal structures of FabIs from various sources. The crystal structure of FabZ, the β-hydroxyacyl acyl carrier protein dehydratase of P. falciparum, has been determined at a resolution of 2.4 ˚A. Each subunit of FabZ has a hotdog fold with one long central α-helix surrounded by a six-stranded antiparallel β-sheet. FabZ has been found to exist as a homodimer in the crystals of the present study in contrast to the hexameric form which is a trimer of dimers crystallized in a different condition, reported while we completed the structure of the dimeric form. In the dimeric form, the architecture of the catalytic site has been drastically altered with two catalytic histidine residues moving away from the catalytic site caused by two cis to trans peptide flips compared to the hexameric form. These alterations not only prevent the formation of a hexamer but also distort the active site geometry resulting in a dimeric form of FabZ that is incapable of substrate-binding. The dimeric state and an altered catalytic site architecture make the dimeric FabZ presented in the thesis distinctly different from the FabZ structures described so far. This is the first observation and report of the existence of an inactive form of the enzyme and its unique structural features. Further analysis using dynamic light scattering and size exclusion chromatographic studies have shown that a pH-related conformational switching occurs between the inactive dimers and active hexamers of FabZ in P. falciparum. These findings open alternate and entirely new strategies to design inhibitors to make FabZ inactive. FabZ crystals show polymorphism with varying length of its longest cell axis. We could collect X-ray diffraction data for three of these forms. An analysis of these forms revealed that three flexible loops of the structure including those containing the peptide flips compete for the space between two symmetry-related molecules. In the form with the longest cell axis, the loops have the highest stability resulting in a better diffraction from the crystal. We also performed docking studies with two previously characterized inhibitors of FabZ. The docking showed that the inhibitors bind strongly at the active site each one making a number of different interactions with the catalytic residues. Observations from our docking studies are in excellent agreement with and strongly supported by chemical modification and fluorimetric analysis of the wild type enzyme and its mutants. Chapters 5 and 6 explain in detail about the structure solution of dimeric form of PfFabZ, the pH induced conformational flipping of two cis-trans peptide flips that lead to different oligomeric states, and the structural basis for these oligomeric shifts. The mechanism of action of PfFabZ inhibitors NAS-21 and NAS-91 are also discussed in detail. Intrigued by the hot dog fold of the Fab enzyme, we have analyzed and compared proteins having this fold in their structures. It has been observed that the fold is often associated with fatty acids. However, the sequences, the quaternary structures, substrate specificities and the reactions that the proteins catalyze are quite diverse. The consensus sequence motifs lining the interface of quaternary association and at active site clearly indicated that the information for different modes of quaternary associations is embedded in the sequences itself. The diversity in function and quaternary association of hot dog fold proteins and their structure-function relationships are discussed in chapter 7. Malaria affects hundreds of millions of people worldwide causing about two million deaths every year. In spite of the commendable success of the available antimalarials, it has not been possible to contain the disease completely as the protozoan has become resistant to a majority of frontline drugs. The structural studies presented here should enhance the current biochemical knowledge to develop selective and more potent inhibitors of the pathway and contribute to the ongoing efforts to fight the disease.