Arabidopsis Serine/Threonine/Tyrosine Protein Kinase : Implications in Growth And DEvelopment
Protein phosphorylation is a key cellular regulatory mechanism. Phosphorylation can either activate or inhibit the function of a particular protein. Activation of protein kinases has been implicated in response to light, pathogen attack, growth regulators, stress and nutrient deficiency in plants. M...
Main Author: | |
---|---|
Other Authors: | |
Language: | en_US |
Published: |
2018
|
Subjects: | |
Online Access: | http://etd.iisc.ernet.in/2005/3861 http://etd.iisc.ernet.in/abstracts/4733/G26896-Abs.pdf |
id |
ndltd-IISc-oai-etd.iisc.ernet.in-2005-3861 |
---|---|
record_format |
oai_dc |
spelling |
ndltd-IISc-oai-etd.iisc.ernet.in-2005-38612018-07-20T15:41:51ZArabidopsis Serine/Threonine/Tyrosine Protein Kinase : Implications in Growth And DEvelopmentIyappan, RLipid MetabolismProtein KinaseArbidopsis Thaliana ProteinsPlant Protein KinasesArabidopsis Dual Specificity STY Protein Kinase (AtSTYK)Arabidopsis Serine/Theronine KinasesArabidopsis Tyrosine KinasesPlants GrowthSTY Protein KinaseArabidopsis thalianaOleosin 1Serine/threonine/tyrosine Protein KinaseLysophosphatidic Acid PhosphatasePlant PhysiologyProtein phosphorylation is a key cellular regulatory mechanism. Phosphorylation can either activate or inhibit the function of a particular protein. Activation of protein kinases has been implicated in response to light, pathogen attack, growth regulators, stress and nutrient deficiency in plants. Most of the intracellular signaling pathways use protein phosphorylation to create signals and conduct them further. Identification of the physiological substrates for the protein kinase enables the understanding of how the signaling networks function and how they are disturbed under adverse conditions. Identification of the physiological substrates for the kinase is limited by the low stoichiometry of protein phosphorylation inside the cell. Although, recent advances in mass spectrometric techniques have increased the identification of phosphorylated protein in the cell, the precise connection between the kinase and identified phosphorylated protein is not established. Dual-specificity kinases that phosphorylate on serine, threonine and tyrosine residues have been identified and characterized in plants. However, the in vivo substrates for most of these kinases have not been identified. Recently a manganese-dependent dual-specificity STY protein kinase (STYK) has been identified from Arabidopsis thaliana which has been suggested to play a role in plant growth, development and in systemic acquired resistance. The identification of the physiological substrate for AtSTYK may help in understanding the signal transduction pathway the kinase in involved and how it is perturbed in different physiological condition. Therefore, the main objectives of my current study are, To identify the physiological substrates of the AtSTY dual specificity kinase (STYK). 1) Identification of the substrates by using genetic, proteomic and biochemical approaches. 2) Biochemical characterization of the substrate phosphorylation. 3) Identifying the biochemical function of the substrate protein. 4) Assessing the significance of substrate phosphorylation.Rajasekhran, Ram2018-07-19T07:06:51Z2018-07-19T07:06:51Z2018-07-192015Thesishttp://etd.iisc.ernet.in/2005/3861http://etd.iisc.ernet.in/abstracts/4733/G26896-Abs.pdfen_USG26896 |
collection |
NDLTD |
language |
en_US |
sources |
NDLTD |
topic |
Lipid Metabolism Protein Kinase Arbidopsis Thaliana Proteins Plant Protein Kinases Arabidopsis Dual Specificity STY Protein Kinase (AtSTYK) Arabidopsis Serine/Theronine Kinases Arabidopsis Tyrosine Kinases Plants Growth STY Protein Kinase Arabidopsis thaliana Oleosin 1 Serine/threonine/tyrosine Protein Kinase Lysophosphatidic Acid Phosphatase Plant Physiology |
spellingShingle |
Lipid Metabolism Protein Kinase Arbidopsis Thaliana Proteins Plant Protein Kinases Arabidopsis Dual Specificity STY Protein Kinase (AtSTYK) Arabidopsis Serine/Theronine Kinases Arabidopsis Tyrosine Kinases Plants Growth STY Protein Kinase Arabidopsis thaliana Oleosin 1 Serine/threonine/tyrosine Protein Kinase Lysophosphatidic Acid Phosphatase Plant Physiology Iyappan, R Arabidopsis Serine/Threonine/Tyrosine Protein Kinase : Implications in Growth And DEvelopment |
description |
Protein phosphorylation is a key cellular regulatory mechanism. Phosphorylation can either activate or inhibit the function of a particular protein. Activation of protein kinases has been implicated in response to light, pathogen attack, growth regulators, stress and nutrient deficiency in plants. Most of the intracellular signaling pathways use protein phosphorylation to create
signals and conduct them further. Identification of the physiological substrates for the protein kinase enables the understanding of how the signaling networks function and how they are disturbed under adverse conditions. Identification of the physiological substrates for the kinase is
limited by the low stoichiometry of protein phosphorylation inside the cell. Although, recent advances in mass spectrometric techniques have increased the identification of phosphorylated protein in the cell, the precise connection between the kinase and identified phosphorylated protein is not established. Dual-specificity kinases that phosphorylate on serine, threonine and
tyrosine residues have been identified and characterized in plants. However, the in vivo
substrates for most of these kinases have not been identified. Recently a manganese-dependent dual-specificity STY protein kinase (STYK) has been identified from Arabidopsis thaliana which has been suggested to play a role in plant growth, development and in systemic acquired resistance. The identification of the physiological substrate for AtSTYK may help in understanding the signal transduction pathway the kinase in involved and how it is perturbed in
different physiological condition.
Therefore, the main objectives of my current study are,
To identify the physiological substrates of the AtSTY dual specificity kinase (STYK).
1) Identification of the substrates by using genetic, proteomic and biochemical
approaches.
2) Biochemical characterization of the substrate phosphorylation.
3) Identifying the biochemical function of the substrate protein.
4) Assessing the significance of substrate phosphorylation. |
author2 |
Rajasekhran, Ram |
author_facet |
Rajasekhran, Ram Iyappan, R |
author |
Iyappan, R |
author_sort |
Iyappan, R |
title |
Arabidopsis Serine/Threonine/Tyrosine Protein Kinase : Implications in Growth And DEvelopment |
title_short |
Arabidopsis Serine/Threonine/Tyrosine Protein Kinase : Implications in Growth And DEvelopment |
title_full |
Arabidopsis Serine/Threonine/Tyrosine Protein Kinase : Implications in Growth And DEvelopment |
title_fullStr |
Arabidopsis Serine/Threonine/Tyrosine Protein Kinase : Implications in Growth And DEvelopment |
title_full_unstemmed |
Arabidopsis Serine/Threonine/Tyrosine Protein Kinase : Implications in Growth And DEvelopment |
title_sort |
arabidopsis serine/threonine/tyrosine protein kinase : implications in growth and development |
publishDate |
2018 |
url |
http://etd.iisc.ernet.in/2005/3861 http://etd.iisc.ernet.in/abstracts/4733/G26896-Abs.pdf |
work_keys_str_mv |
AT iyappanr arabidopsisserinethreoninetyrosineproteinkinaseimplicationsingrowthanddevelopment |
_version_ |
1718713202194251776 |