Um problema inverso na modelagem da difusão do calor

O presente trabalho aborda um problema inverso associado a difus~ao de calor em uma barra unidimensional. Esse fen^omeno e modelado por meio da equac~ao diferencial par- cial parabolica ut = uxx, conhecida como equac~ao de difus~ao do calor. O problema classico (problema direto) envolve essa equac~a...

Full description

Bibliographic Details
Main Author: Jhoab Pessoa de Negreiros
Other Authors: Carlos Antonio de Moura
Format: Others
Language:Portuguese
Published: Universidade do Estado do Rio de Janeiro 2010
Subjects:
Online Access:http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=3164
Description
Summary:O presente trabalho aborda um problema inverso associado a difus~ao de calor em uma barra unidimensional. Esse fen^omeno e modelado por meio da equac~ao diferencial par- cial parabolica ut = uxx, conhecida como equac~ao de difus~ao do calor. O problema classico (problema direto) envolve essa equac~ao e um conjunto de restric~oes { as condic~oes inicial e de contorno {, o que permite garantir a exist^encia de uma soluc~ao unica. No problema inverso que estudamos, o valor da temperatura em um dos extremos da barra n~ao esta disponvel. Entretanto, conhecemos o valor da temperatura em um ponto x0 xo no interior da barra. Para aproximar o valor da temperatura no intervalo a direita de x0, propomos e testamos tr^es algoritmos de diferencas nitas: diferencas regressivas, leap-frog e diferencas regressivas maquiadas. === This work deals with an inverse problem for the heat diusion in a bar of size L. This one-dimensional phenomenum is modeled by the parabolic partial dierential equation ut = uxx, known as the heat diusion equation. The classic problem (Direct Problem) involves this equation coupled to a set of constraints { initial and boundary conditions { in such a way as to guarantee a unique solution for it. The inverse problem hereby considered may be described in the following way: at one bar extreme point the temperature is un- known, but it is given at a xed interior point for all time. Three nite dierence algorithms (backward dierences, leap-frog, disguised backward dierences) are proposed and tested to approximate solutions for this problem. Keywords: Diusion equation. Finite dierences. Inverse problem.