Explorando abordagens evolutivas para recuperação de imagens baseada em conteúdo

O processo de organização e recuperação de imagens apresenta inúmeros problemas a serem abordados, compreender o significado subjetivo de uma consulta visual por meio de parâmetros numéricos que podem ser extraídos e comparados por meio de um computador é um dos maiores desafios. A disparidade entre...

Full description

Bibliographic Details
Main Author: Rocha, Reginaldo da
Other Authors: Bugatti, Pedro Henrique
Language:Portuguese
Published: Universidade Tecnológica Federal do Paraná 2018
Subjects:
Online Access:http://repositorio.utfpr.edu.br/jspui/handle/1/2933
Description
Summary:O processo de organização e recuperação de imagens apresenta inúmeros problemas a serem abordados, compreender o significado subjetivo de uma consulta visual por meio de parâmetros numéricos que podem ser extraídos e comparados por meio de um computador é um dos maiores desafios. A disparidade entre a comparação realizada pela máquina e o que de fato o ser humano interpreta de uma consulta visual é denominado de lacuna semântica. Diversos trabalhos na literatura abordam técnicas para diminuir essa disparidade. Nesse contexto, a abordagem de realimentação de relevância apresenta-se como um meio eficaz para capturar a intenção do usuário e reduzir a diferença entre os conceitos semânticos oriundos da percepção visual do usuário, bem como das características visuais de baixo nível extraídas automaticamente de uma imagem. Entretanto, a lacuna semântica ainda é um desafio a ser vencido. Por tal motivo, o presente trabalho tem por objetivo o estudo, análise e proposta de um arcabouço para recuperação de imagens o qual combina a realimentação de relevância unida a algoritmos evolutivos visando aproximar a expectativa do usuário em relação aos resultados retornados pela recuperação de imagens, por meio da captura de intenção do mesmo e posterior definição dos parâmetros mais adequados. Para tanto, a ideia principal do trabalho é inserir memória de aprendizado ao processo de recuperação de imagens por conteúdo, armazenando os dados da interação do usuário com o sistema em perfis, os quais posteriormente serão utilizados para prover respostas ao usuário de maneira personalizada, consequentemente, contribuindo para diminuição da lacuna semântica. === The process of organization and retrieval of images presents numerous problems to be addressed, to understand the subjective meaning of a visual query through numerical parameters that can be extracted and compared by a computer is a challenge. The disparity between the comparison performed by the machine and that in fact the human being interprets a visual query is known as semantic gap. Several studies in the literature techniques to address this gap. In this context, relevance feedback (RF) is an effective approach to capture user intent and reduce the difference between semantic concepts and the visual characteristics of an image. However, the semantic gap is still a challenge to be overcome, therefore, the present work aims to study, analysis and proposal for a new framework for image retrieval through relevance feedback combined with evolutionary algorithms aiming to bring the user’s expectation througth the results returned by the retrieval of images through the his intention and definition of the most appropriate parameters. To this end, the main idea of the work is to insert learning memory in a content-based image retrieval system for this by storing the user interaction data with the system profiles so that later these data are able to provide parameters for the system “learn” and respond to personalized user and need. Thus, contributing to reduction of existing semantic gap between the results of a retrieval operation and indeed expected images for a specific context, improving the efficiency and effectiveness of the retrieval process.